
M ost astronomers gaze at the heavens 
and see stars. William Chaplin hears 
an orchestra — a celestial symphony 

in which the smallest stars are flutes, the 
medium-sized ones are trombones and the 
giants are reverberating tubas.

The sounds are internal vibrations that reveal 
themselves as a subtle, rhythmic brightening 
and dimming of a star, explains Chaplin, an 
astrophysicist at the University of Birming-
ham, UK, and a specialist in asteroseismology. 
These waves provide information that astrono-
mers can’t get in any other way: triggered by the 
turbulent rise and fall of hot gases on the star’s 
surface, the vibrations penetrate deep into the 
stellar interior and become resonating tones 
that reveal the star’s size, composition and mass 
(see ‘Celestial music’). So by watching for the 
characteristic fluctuations in brightness, says 
Chaplin, “we can literally build up a picture of 
what the inside of a star looks like”. 

Better still, he adds, asteroseismologists are 
now hauling in the data wholesale. After years 
of being hampered by Earth’s turbulent atmos-
phere, which obscures the view of the Universe 
and has limited asteroseismology to about 20 
of the brightest nearby stars, researchers have 
been astonished by the trove of information 
coming from a new generation of space obser-
vatories. Thanks to the French-led Convection, 

Rotation and Planetary Transits (COROT) 
space telescope, launched in 2006, and NASA’s 
Kepler space tele scope, launched in 2009, they 
can now listen in on hundreds of stars at a time.

“We are in a golden age for the study of stellar 
structure and evolution,” says Hans Kjeldsen, an 
astronomer at Aarhus University in Denmark.

“Nature seems to have been kind to us,” agrees 
Ronald Gilliland, an astronomer at Pennsylva-
nia State University in University Park. “The 
stars seem not to be shy about showing us lots 
of oscillations that will allow us to reveal their 
innermost secrets.” The flood of data has shed 
light on the interior of red-giant stars, and 
forced astronomers to question their under-
standing of how stars and galaxies form.

Stellar serendipity
Asteroseismology isn’t the main mission of 
either COROT or Kepler: they are intended to 
hunt for planets outside the Solar System (exo-
planets) that have roughly the size and orbital 
radius of Earth. But because they both look for 
the tiny dip in brightness caused when a planet 
transits, or passes in front of, its parent star, 

they both have to record 
a drop in stellar bright-
ness of no more than 1 
part in 1,000. And that, in 
theory, makes them able 

to detect the effects of the stellar sound waves. 
Before launch, no one could say whether the 

satellites would make good on this. Kepler’s 
exoplanet search has, in fact, been hindered by 
stellar oscillations that obscure transits, but are 
caused by magnetic activity1, so are unrelated to 
sound waves. Acoustic oscillations and transits 
don’t interfere with each other: sound waves 
cause the brightness of Sun-like stars to vary 
on time scales of 5–15 minutes, whereas plan-
etary transits last for hours. So the planners for 
both COROT and Kepler were happy to include 
asteroseismologists in their mission teams. “We 
are riding on the back of the planet hunters,” 
says Douglas Gough, an asteroseismologist at 
the University of Cambridge, UK. 

As it turned out, the sound-wave data came 
down in an avalanche — especially from 
Kepler, which has a 0.95-metre-aperture tele-
scope — nine times the sensitivity of COROT’s 
— plus the ability to look at a larger group of 
stars for a longer period of time than COROT. 

“Everything came together marvellously 
well,” says Gilliland.

Last April, Chaplin and his colleagues  
published their analysis2 of acoustic oscillations 
observed by Kepler in 500 Sun-like stars. The 
frequency and amplitude of the oscillations 
revealed that the stars have roughly the sizes pre-
dicted by established theories of astrophysics, 

The sounds of the stars
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More about Kepler’s 
exoplanet search:
go.nature.com/ooqztr

Data from NASA’s Kepler space telescope have revolutionized the search for planets 
outside the Solar System — and are now doing the same for asteroseismology.
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Asteroseismology

 New eyes to see the invisible stellar interiors

 Development of Helioseismology to Asteroseismology

 Various physical conditions/environment

 evolution stage, stratification, chemical compositions, rotation, 
magnetism, binarity, planets



Kepler satellite
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 Almost continuous observations over 4 years
 

 Observations from Space 
 no atmospheric sintillation
 no day-night gaps

  Extremely high precision; ∆L/L ∼ 10-6

Keplerian revoltion
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today1960’s

\\\\\\：p-mode

//////：g-mode

Semiregular -> solar like

∆L(t) L(ω)～

Handler, G. 2012, ASPC, 462, 111 7
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continuous monitoring 150 000 stars over four 
years !



Helioseismology

 New eyes to see 
the invisible interior of the Sun
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Robert B. Leighton 
(Sep 10, 1919 – March 9, 1997)



Discovery of Solar 5-minute Oscillation
and 

Supergranulation (1960)

Aiming to study turbulence ... 
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Doppler velocity measurement 

 Musman, S. & Rust, D.M. 1970, Sol. Phys., 13, 261



mass conservation

momentum conservation

energy conservation





𝝆(r,t) = 𝝆0(r) + 𝝆1(r,t) + 𝝆2(r,t) + …

r (t,r0) = r0 + 𝞷(t,r0)

Lagrangian displacement

Lagrangian velocity
               v = dr/dt
where 
d/dt := 𝝏/𝝏t + (v0・𝜵)

is Lagrangian derivative



f (r,t) = f0 (r) + f’ (r,t)

f (r0,t) = f0 (r0) +𝜹f (r0,t)

r (t,r0) = r0 + 𝞷(t,r0)

= f0(r - 𝞷) +𝜹f (r0,t)

=f0(r) -(𝞷・𝜵)f0(r) + 𝜹f (r0,t)

Eulerian view: coordinates fixed

Lagrangian view: mass element fixed



unperturbed flow

perturbed flow

r(t=0,r0) =: r0 

r(t,r0)

r(t)

𝝃(t)

Illustration of Lagrangian displacement δr. The red wavy line shows the perturbed flow, and 
light-blue line shows the unperturbed flow, both for the same fluid element of mass dm.



∴ 𝜹f (r0,t) = f’ (r,t) +(𝞷・𝜵)f0(r) 

To first order,

 𝜹f (r,t) = f’ (r,t) +(𝞷・𝜵)f0(r) 

Lagrangian perturbation: mass element fixed

Eulerian perturbation: coordinates fixed



Time scales

Dynamical timescale : 𝝉dyn = (GM/R3)1/2

Thermal timescale : 𝝉th = ∫cvTdm/L

𝝉dyn ⋘ 𝝉th

Motion is almost adiabatic, that is,
𝜹S = 0, or equivalently,

𝜹p/p= -𝜞1𝜹𝝆/𝝆
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plane parallel isothermal atmosphere

Set 

to derive a dispersion relation:
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Two types of modes
• Acoustic waves

• restoring force = 
gaseous pressure

• high frequency

• stellar envelope

• Gravity waves

• restoring force = 
buoyancy

• low frequency

• stellar deep core



Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development



Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development : Fourier analysis



Deubner, F.-L. 1975, A&A, 44, 371.

Observational development : wider view



• Deubner’s observation shows a set of ridges, 
which was in good agreement with the theoretical 
computation done by Ando & Osaki (1975).

• However, agreement is not perfect. Observed 
ridges have higher frequencies.

• This means that the sound speed of the real Sun 
is higher than the model.

• Since Teff is fixed, this means that the temperature 
gradient is higher in the real Sun.

• This means the convection zone of the real Sun is 
deeper than expected.



Self-excitation
Thermal overstability:

opacity mechanism working in an 
ionization zone

Stochastic excitation due to turbulence:
waves generated by turbulence 
resonate in the cavity of a whole star

Tidally forced oscillation

Excitation mechanisms





Eigenmode: Ylm(θ,φ) exp(iωlmnt)
31

spherical degree l
azimuthal order m
radial order n



Libbrecht, K.G. 1988, ApJ, 334, 510.

Observational development : narrow-band filter



Observational development : 2D disk image



Solar oscillation =∑ almn Ylm(θ,φ) exp(iωlmnt)

34

spherical harmonic analysis
(l, m)

Fourier transform
(almn , ωlmn)



Duvall, T.L., Jr., Harvey, J.W., Libbrecht, K.G., Popp, B.D. & Pomerantz, M.A. 
1988, ApJ, 324, 1158.

Observational development : high to middle range of l



36



Woodard, M. & Hudson, H. 1983, Solar Phys., 82, 67. 

Observational development : Brightness variation

clear comb structure = evidence for
low degree l high order n p-modes



Palle, P.L., Perez, J.C., Regulo, C., Roca Cortes, C., Isaak, G.R., McLeod, C.P. & 
van der Raay, H.B. 1986, A&A,169, 313.

Doppler measurement with integrated light



Doppler measurement with integrated light

clear comb structure = evidence for
low degree l high order n p-modes



Gelly, B., Fossat, E., Grec, G. & Schmider, X.-F. 1988, A&A, 200, 207.

Echelle diagram           𝝂nl = 𝚫𝝂 (n+l/2+𝜺)



Gelly, B., Fossat, E., Grec, G. & Schmider, X.-F. 1988, A&A, 200, 207.

Echelle diagram           𝝂nl = 𝚫𝝂 (n+l/2+𝜺)



Observational development : high precision

Libbrecht, K.G., Woodard, M.F. & Kaufman, J.M. 1990, ApJS, 74, 1129



Observational development : high precision



Observational development : ultra-high precision

color code:  
amplitude
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In order to global structures, we need to zoom out.

http://lambda.gsfc.nasa.gov/product/map/current/m_images.cfm



Observed oscillation is 
a superposition of p-
modes of the Sun.

Total number of the 
detected modes is 
nxlxm ~ 10x103x103

Quantitatively different 
from traditional study 
of pulsating stars



�2�
�t2

= �L(�)

Forward problem approach:

• Make a series of equilibrium models with some 
parameters.

• Compute eigenvalues of each model.
• Find the best fitting model by comparing the 

computed eigenvalues and the observed ones.

�2� = L(�; c2, �)

• No guarantee, or no hope, for uniqueness



�2 =
�

�� · L(�) dm/
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|�|2 dm

Integral equation for inverse problem:

Inverse problem approach:

��2 =
�

�� ·
��

�L
�c2

�
�c2 +

�
�L
��

�
��

�
dm

�2� = L(�; c2, �)

• Assume a good model and compute its eigenvalues
• Take differences from the observed frequencies as the LHS
• Solve the above equations as algebraic equations 
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太陽の内部回転

図 太陽固有振動の逆問題によって求めた太陽内部の断熱音
速を，太陽内部の音速の 乗とモデルの音速の 乗との相対差
として示した．黒丸が 乗相対差の推定値を，縦棒の長さが誤
差を，横棒の長さが分解能を示している．r/R⊙ ≃ 0.7 に対流
層の底があり，そこでモデルの音速が小さ過ぎることが分かる．

太陽ニュートリノ問題はニュートリノが質量を持つことでほぼ解決したと考え
られているが，この素粒子物理の非標準モデルについて拘束条件を与えるには，
太陽中心の探査が大きな役目を果たし得ることに変わりはない．そのためには，
モードの検出が重要である．
密度分布も同様にインバージョンによって求められているが，精度 誤差，分

解能 は音速のインバージョンに較べて悪い．
いずれにせよ，現在の太陽モデルはかなり正確であることが確かめられたとい

える．こんなに正確になったのも，日震学からのフィードバックがなされてきた
結果であることは強調しておきたい．

太陽の内部回転

自転による振動数偏移

前節では，太陽が球対称であると考えて，固有振動数からその内部構造を調べ
る方法について述べた．実際の太陽には非球対称な磁場もあり，自転もある．自
転が遅ければ，太陽の構造自体が非球対称になる効果は無視できるが，この場合

Sound speed profile inside the Sun
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The differences are tiny, but meaningful!



Internal Rotation of the Sun

Driving force of Magnetic Dynamos

Driving force of Solar Activities

Influence on Solar Structure & Evolution
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Influence of rotation

Linearized equation of motion:

�v
�t

+ (v · �)v + 2�0 � v + �0 � �0 � r = ��� � 1
�
�p

Coriolis force
�v�

�t
+ (v0 · �)v� + (v� · �)v0 + 2�0 � v� = ���� + ��

�2 �p0 � 1
�0

�p�



Hence, the linearized equation of motion:

L(�) � �2� + �M(�) = 0

M(�) := 2i[�0 � � + (v0 · �)�]

where



ρ = ρ(0) + ρ(1) + · · · ,

ξ = ξ(0) + ξ(1) + · · · ,

Treat the influence of M as perturbations;

L(�) � �2� + �M(�) = 0

� = �(0) + �(1) + ...

L(0)
�
�(0)

�
� �(0)2�(0) = 0

L(0)
�
�(1)

�
+ L(1)

�
�(0)

�
� �(0)2�(1) � 2�(0)�(1)�(0) + �(0)M(0)

�
�(0)

�
= 0



v0 = Ω × r = (0, 0, rΩ sin θ)

Ω = [Ω(r, θ) cos θ,−Ω(r, θ) sin θ, 0]

∂er

∂φ
= eφ sin θ,

∂eθ

∂φ
= eφ cos θ,

∂eφ

∂φ
= −er sin θ − eθ cos θ,

1
2
ξ∗

m′′ ·M(0)(ξm) = −mΩξ∗
m′′ · ξm − i(Ω + Ω0)ξ∗m′′,rξm,φ sin θ

−i(Ω + Ω0)ξ∗m′′,θξm,φ cos θ

+i(Ω + Ω0)ξ∗m′′,φ(ξm,r sin θ + ξm,θ cos θ).

In the case of slow rotation (Coriols force dominant):

Note that 

Then 



ξ(0) =
l∑

m=−l

αmξnlm

ξ(1) =
∑

m′

∑

n′l′

′
βn′l′m′ξn′l′m′ +

∑

l′m′

γl′m′(r)ηl′m′

ηl′m′ ≡
1

[l′(l′ + 1)]1/2

(
0,

1
sin θ

∂

∂φ
,− ∂

∂θ

)
Y m′

l′ (θ,φ)

Secular equation (Coriolis force dominant) : 

Mm′′m ≡ 1
2Inl

∫ M

0
ξ∗

nlm′′ ·M(0)(ξnlm)dMr,where 

�l
m=�l

�
Mm��m � �(1)�m��m

�
�m = 0

Inl ≡
∫ M

0
|ξnlm|2dMr



1
2

∫ M

0
ξ∗

nlm′′ ·M(0)(ξnlm)dMr = δm′′mm ×
{

Ω0

∫ R

0
ρ(r)r2

(
2ξrξh + ξ2

h

)
dr

+
2l + 1

2
(l − |m|)!
(l + |m|)!

∫ π

θ=0

∫ R

r=0
ρ(r)r2Ω(r, θ)

×
[(
−ξ2

r + 2ξrξh

)
(Pm

l )2

+ξ2
h

[
2Pm

l
dPm

l

dθ

cos θ

sin θ
−

(
dPm

l

dθ

)2

− m2

sin2 θ
(Pm

l )2
]]

dr sin θdθ}

∫ M

0
|ξ(0)|2dMr =

∫ R

0
ρ(r)r2

[
ξ2
r + l(l + 1)ξ2

h

]
dr

Hence 

Mm��m = �(1)rot�m��m



σ(1)rot
m = m ×

{
Ω0

∫ R

0
ρ(r)r2

(
2ξrξh + ξ2

h

)
dr

+
2l + 1

2
(l − |m|)!
(l + |m|)!

∫ R

r=0
ρ(r)r2

[∫ π

θ=0
(Pm

l )2 {Ω(r, θ) sin θ

×
(
2ξrξh − ξ2

r + ξ2
h[1 − l(l + 1)]

)
−

(
3
2

∂Ω
∂θ

cos θ +
1
2

∂2Ω
∂θ2

sin θ

)
ξ2
h

}
dθ

]
dr

}

×
[∫ R

0
ρ(r)r2

[
ξ2
r + l(l + 1)ξ2

h

]
dr

]−1

Cnl =
∫ R
0 ρr2

[
2ξrξh + ξ2

h

]
dr

∫ R
0 ρr2 [ξ2

r + l(l + 1)ξ2
h] dr

In the case of rigid rotation: 

𝝎m(1)rot

�(1)rot
m |inertial frame = �m(1 � Cnl)�



Running summary

The (2l+1)-fold frequency degeneracy is 
resolved by rotation.

In a case of uniform slow rotation, the 
perturbation in frequency due to the Coriolis 
force is proportional to the rotational angular 
velocity and to the azimuthal order m.

In the case of Ω=Ω(r), the perturbation in 
frequency is again linearly proportional to m. 



Solar surface latitudinal differential rotation.

sunspots

spectroscopy
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Observational development : ultra-high precision
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Frequency

m
 / 

l

The inclination is determined by the averaged rotation rate, while 
the S-shape deviation from straight lines indicate latitudinal 
dependence of the internal rotation. 



σ(1)rot
m = m ×

{
Ω0

∫ R

0
ρ(r)r2

(
2ξrξh + ξ2

h

)
dr

+
2l + 1

2
(l − |m|)!
(l + |m|)!

∫ R

r=0
ρ(r)r2

[∫ π

θ=0
(Pm

l )2 {Ω(r, θ) sin θ

×
(
2ξrξh − ξ2

r + ξ2
h[1 − l(l + 1)]

)
−

(
3
2

∂Ω
∂θ

cos θ +
1
2

∂2Ω
∂θ2

sin θ

)
ξ2
h

}
dθ

]
dr

}

×
[∫ R

0
ρ(r)r2

[
ξ2
r + l(l + 1)ξ2

h

]
dr

]−1

𝝎m(1)rot

A set of 𝝎nlm(1)rot is regarded as integral equations to 
determine the 2D internal rotation profile.
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Figure 12. Rotation kernels of our best model with 1.46M⊙ as functions of
fractional radius (upper panel) and their cumulative profiles (lower panel).
It is clear that the gmode (with l = 1 and n = −28) is strongly weighted
to the interior 10 per cent in radius (30 per cent in mass), and the dipolar
pmode (with l = 1 and n = 2) is strongly weighted to the outer envelope.
The quadrupolar mode (with l = 2 and n = −1) is sensitive to both the
core and the envelope, because it is a mixed mode. The gmode does not
sense the inner few per cent of the core because the core is convective. The
gmode and the quadrupolar mode are strongly trapped by the steep gradient
of the distribution of mean molecular weight, which is located in the range,
0.045 ! r/R ! 0.075 (see Fig. 7).

of the core rotation rate, and that the p-mode splitting constrains
the lower limit of the envelope rate. Combining these points, we
are led to the conclusion. Now the details of the argument follow.

(i) The frequency separations of the gmodes are not exactly half
of those of the pmodes, as has already been pointed out in section
2.3. In fact, if we pay attention to the p- and g-mode triplets with
the highest amplitudes (those centred on f = 1.418 d−1 in Table 2
and f = 18.366 d−1 in Table 1, respectively), whose frequencies
are determined most precisely, their splittings are given by

∆f(p) = 0.0101453 ± 0.0000023 d−1 (8)

and

∆f(g) = 0.0047562 ± 0.0000010 d−1 , (9)

giving

∆f(p)− 2∆f(g) = 0.0006329 ± 0.0000030 d−1 . (10)

Note that we generally put (p) and (g) to quantities that are as-
sociated with these (best-measured) dipolar p and gmodes in this
subsection. Since ∆f = δω/(2π), it can be claimed with strong
statistical significance that

δω(p) > 2δω(g) . (11)

(ii) The Ledoux constant, Cn,l, of high-order dipolar gmodes
is not exactly equal to 1

2
, but is a little smaller. This is because a

detailed asymptotic analysis of high-order dipolar gmodes shows
thatCn,1 approaches 1

2
from below [see equations (A24) and (A26)

in appendix A]. A consequence ofCn,1 < 1
2
with equations (3) and

(7) is that

2δω(g) = 2(1−Cn,1)Ω̄(g) > Ω̄(g). (12)

Namely, the upper limit of Ω̄(g) is given by 2δω(g). The corre-
sponding lower limit of the average rotation period is given by
105.13 ± 0.02 d.
(iii) If Cn,l > 0 for the pmode, the rotation rate in the envelope

is constrained from below. Assuming Cn,l > 0 in equation (3), it is
found

δω(p) = (1− Cn,l)Ω̄(p) < Ω̄(p). (13)

Therefore, the lower limit of Ω̄(p) is provided by δω(p). The cor-
responding upper limit of the average rotation period is given by
98.57 ± 0.02 d.
(iv) Equations (11), (12) and (13) lead to

Ω̄(p) > Ω̄(g), (14)

which implies the rotation rate of envelope layers that are probed
by the pmodes are on average higher than that of core layers that
are diagnosed by the gmodes. The corresponding average rotation
period of the envelope layers is at least 7 per cent shorter than that
of the core layers.

Some comments about the crucial assumption, Cn,l > 0, at
step (iii) above follow. Although it is generally possible to find an
eigenmode withCn,l < 0, such modes seem to be rare (e.g. Gough
2002). In fact, not a single mode with Cn,l < 0 has been found in
any of our evolutionary models in section 3, even if those that can-
not reproduce the observed frequencies are included. On the other
hand, we have confirmed that some low-order dipolar pmodes of
polytropic models with index higher than 3.9 have Cn,l < 0. How-
ever, the values are no less than about −0.002, whereas a value of
Cn,l ! −0.07 would be required to conclude Ω̄(p) ! Ω̄(g).

We stress once again that the above argument is based on only
conservative assumptions that are not influenced by detailed mod-
elling of the star and precise mode identification. For example, one
of our fundamental assumptions is that the pmode is more sensitive
to outer layers of the star than the gmode. This is generally true for
any pair of a pmode and a high-order gmode in any main-sequence
star. Moreover, although we rely on the identification of the gmode
as the one with l = 1 and a large radial order (|n| ≫ 1), the ex-
act value of n need not be specified, as is the case for the pmode.
Therefore, our conclusion of the higher rotation rate in the envelope
than in the core is robust.

4.3 Two-zone modelling

The robust conclusion obtained in the last subsection was made
possible by the structure of the rotation kernels. Independently of
the details of the model, the g-mode kernels are primarily confined
in the core, whereas the p-mode kernels have large amplitudes only
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Contrary to the solar case, detectable pulsation modes
 are limited to low degree (l=0-3) modes. 



Two types of modes
• Acoustic waves

• restoring force = 
gaseous pressure

• high frequency

• stellar envelope

• Gravity waves

• restoring force = 
buoyancy

• low frequency

• stellar deep core
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Figure 12. Rotation kernels of our best model with 1.46M⊙ as functions of
fractional radius (upper panel) and their cumulative profiles (lower panel).
It is clear that the gmode (with l = 1 and n = −28) is strongly weighted
to the interior 10 per cent in radius (30 per cent in mass), and the dipolar
pmode (with l = 1 and n = 2) is strongly weighted to the outer envelope.
The quadrupolar mode (with l = 2 and n = −1) is sensitive to both the
core and the envelope, because it is a mixed mode. The gmode does not
sense the inner few per cent of the core because the core is convective. The
gmode and the quadrupolar mode are strongly trapped by the steep gradient
of the distribution of mean molecular weight, which is located in the range,
0.045 ! r/R ! 0.075 (see Fig. 7).

of the core rotation rate, and that the p-mode splitting constrains
the lower limit of the envelope rate. Combining these points, we
are led to the conclusion. Now the details of the argument follow.

(i) The frequency separations of the gmodes are not exactly half
of those of the pmodes, as has already been pointed out in section
2.3. In fact, if we pay attention to the p- and g-mode triplets with
the highest amplitudes (those centred on f = 1.418 d−1 in Table 2
and f = 18.366 d−1 in Table 1, respectively), whose frequencies
are determined most precisely, their splittings are given by

∆f(p) = 0.0101453 ± 0.0000023 d−1 (8)

and

∆f(g) = 0.0047562 ± 0.0000010 d−1 , (9)

giving

∆f(p)− 2∆f(g) = 0.0006329 ± 0.0000030 d−1 . (10)

Note that we generally put (p) and (g) to quantities that are as-
sociated with these (best-measured) dipolar p and gmodes in this
subsection. Since ∆f = δω/(2π), it can be claimed with strong
statistical significance that

δω(p) > 2δω(g) . (11)

(ii) The Ledoux constant, Cn,l, of high-order dipolar gmodes
is not exactly equal to 1

2
, but is a little smaller. This is because a

detailed asymptotic analysis of high-order dipolar gmodes shows
thatCn,1 approaches 1

2
from below [see equations (A24) and (A26)

in appendix A]. A consequence ofCn,1 < 1
2
with equations (3) and

(7) is that

2δω(g) = 2(1−Cn,1)Ω̄(g) > Ω̄(g). (12)

Namely, the upper limit of Ω̄(g) is given by 2δω(g). The corre-
sponding lower limit of the average rotation period is given by
105.13 ± 0.02 d.
(iii) If Cn,l > 0 for the pmode, the rotation rate in the envelope

is constrained from below. Assuming Cn,l > 0 in equation (3), it is
found

δω(p) = (1− Cn,l)Ω̄(p) < Ω̄(p). (13)

Therefore, the lower limit of Ω̄(p) is provided by δω(p). The cor-
responding upper limit of the average rotation period is given by
98.57 ± 0.02 d.
(iv) Equations (11), (12) and (13) lead to

Ω̄(p) > Ω̄(g), (14)

which implies the rotation rate of envelope layers that are probed
by the pmodes are on average higher than that of core layers that
are diagnosed by the gmodes. The corresponding average rotation
period of the envelope layers is at least 7 per cent shorter than that
of the core layers.

Some comments about the crucial assumption, Cn,l > 0, at
step (iii) above follow. Although it is generally possible to find an
eigenmode withCn,l < 0, such modes seem to be rare (e.g. Gough
2002). In fact, not a single mode with Cn,l < 0 has been found in
any of our evolutionary models in section 3, even if those that can-
not reproduce the observed frequencies are included. On the other
hand, we have confirmed that some low-order dipolar pmodes of
polytropic models with index higher than 3.9 have Cn,l < 0. How-
ever, the values are no less than about −0.002, whereas a value of
Cn,l ! −0.07 would be required to conclude Ω̄(p) ! Ω̄(g).

We stress once again that the above argument is based on only
conservative assumptions that are not influenced by detailed mod-
elling of the star and precise mode identification. For example, one
of our fundamental assumptions is that the pmode is more sensitive
to outer layers of the star than the gmode. This is generally true for
any pair of a pmode and a high-order gmode in any main-sequence
star. Moreover, although we rely on the identification of the gmode
as the one with l = 1 and a large radial order (|n| ≫ 1), the ex-
act value of n need not be specified, as is the case for the pmode.
Therefore, our conclusion of the higher rotation rate in the envelope
than in the core is robust.

4.3 Two-zone modelling

The robust conclusion obtained in the last subsection was made
possible by the structure of the rotation kernels. Independently of
the details of the model, the g-mode kernels are primarily confined
in the core, whereas the p-mode kernels have large amplitudes only
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       Sun as a Star      



71

Solar-like stars:
convection excites acoustic modes



∆ν ∝ (M/R3) 1/2 = M1/2R-3/2

νmax ∝ g Teff-1/2 ∝ MR-2Teff-1/2

∆ν

∴R ∝ νmax ∆ν-2

      M ∝ νmax3 ∆ν-4

http://bison.ph.bham.ac.uk
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acoutic mode：

frequency ~ (sound travel time from the center to the surface)-1

               ~ (GM/R3)1/2

sound wave: fast in the deep interior, less sensitive to the core 

refraction due to the temperature gradient induces the sensibility to the core, evolution stage

νnl≃∆ν( n+l/2+ε) -dnl

∆ν = [2∫ c-1dr]-1

dnl : sensitive to the core
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Future prospects for solar-type stars 3

Figure 1. Results from Kepler on solar-type stars with detectable oscillations.
Plotted, versus effective temperature Teff , are: Observed average large frequency
separations, ∆ν (top panel); observed frequencies of maximum oscillations power,
νmax (middle panel); observed luminosities L ∝ R2T 4

eff , computed from the aster-
oseismically determined radii, R (bottom panel). Symbol sizes are proportional to
the observed signal-to-noise ratio of the mode peaks in the frequency-power spec-
trum. The location of the Sun is marked with the usual solar symbol. The solid lines
are evolutionary tracks (Padova models) for solar composition, computed for masses
ranging from 0.7 to 1.5 M⊙ (Girardi et al. 2002, 2004; Marigo et al. 2008).

Solar-like oscillations
detected by Kepler

∆ν

νmax

Teff

Teff
W. J. Chaplin 2012, ASPC, 462, 527 



Self-excitation
Thermal overstability:

opacity mechanism working in an 
ionization zone

Stochastic excitation due to turbulence:
waves generated by turbulence 
resonate in the cavity of a whole star

Excitation mechanisms



valve mechanism

by analogy to car engines



coursety: J. Christensen-Dalsgaard78



recent progress
• Stellar rotation leads to frequency splittings.

• Acoustic modes tell us rotation of stellar outer 
envelope.

• Gravity modes tell us rotation of stellar deep core.

• To our surprise, core-to-envelope spin rate ratio is small.

• This implies the presence of very efficient angular 
momentum transfer / mixing. 

• Internal rotation of stars became observational science.
79



Arthur S. Eddington

At first sight it would seem 
that the deep interior of the 
sun and stars is less accessible 
to scientific investi-gation than 
any other region of the 
universe. Our telescopes may 
probe farther and farther into 
the depths of space; but how 
can we ever obtain certain 
knowledge of that which is 
hidden behind substantial 
barriers? What appliance can 
pierce through the outer layers 
of a star and test the conditions 
within?80



IV. Asteroseismic New Insights 
to Stellar Rotation 
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Stellar rotation is measured from spectroscopic line broadening.



208 F. Royer

Fig. 1. (a) Distribution of v sin i as a function of spectral type. The individual values
(crosses) are taken from the compilation in [20] and completed by v sin i data from [2]
and [50]. The variation of the average v sin i per spectral type (solid thick line) is also
over-plotted. (b) The sub-panel in the upper-right corner represents the color-coded
scale density of points in the same diagram v sin i – spectral type; both axes have the
same scale as in (a). Darker tones stand for higher densities

the average rotation rate decreases with later spectral type. In Fig. 1a, one
can also notice the drop in average v sin i around A0–A1, which corresponds to
the over-density of slow rotators in sub-panel (Fig. 1b). These aspects will be
addressed in the following sections.

Different methods exist to measure stellar rotation, depending on the ob-
served signature of rotation:

(i) the spectral line profile broadening, which gives the projected equatorial
velocity: v sin i,

(ii) the photometric modulation of starlight, due to the presence of spots on the
surface, which allows the derivation of the rotational period,

(iii) the Rossiter effect which distorts the radial velocity curve in some eclipsing
binary systems,

(iv) the shape of the stellar disk, measured by interferometric observations, to
derive the oblateness of the star caused by fast rotation.

The first three methods are overviewed in [54], and the last and most recent
one is detailed in [59]. Methods (ii), (iii) and (iv) are limited to specific objects:
stars with spots (ii), eclipsing binary systems (iii), nearby and bright stars (iv),
whereas the first method can be applied to a very wide range of objects.

This chapter focuses first on the rotational broadening and the methods for
measuring the v sin i parameter, with special emphasis on the Fourier analysis.

F. Royer 2009, Lecture Notes in Phys., 765, 207 



Some thoughts
• Helioseismology opened a new way to see the invisible internal 

rotation of the Sun, which had had no hope to see it.
• Surprisingly, the radiative core of the Sun was found to be 

rotating uniformly and slowly.
• Ultimate compact objects, neutron stars and pulsars, are rotating 

fast indeed, but more slowly than the case of local angular 
momentum conserved.

• Hence, angular momentum in a star must be lost substantially 
during stellar evolution.

• Mass-loss phase at RGB or AGB has been regarded as such a 
candidate.

• But, the Sun, as a main sequence star, seems to have already lost 
its angular momentum.

• It is desirable to see evolution of stellar rotation.



Remarks:  INS = Isolated Neutron Stars, RRAT = Rotating Radio Transients, CCO = Compact Central Objects

from http://inspirehep.net/record/1217663/plots



Some thoughts

• In the case of distant stars, the photometrically detectable modes 
are limited only to very low degree modes, such as l=0~2 or 3.

• Hard to see the S-shape form of 𝜟𝝂 as a function of m / l.
• Visibility of the rotational splitting is highly dependent on the 

inclination angle to the line-of-sight.
• In the case of solar-like stars, m-modes are expected to be equally 

excited. 
• In the case of solar-like stars, the rotational splitting is likely to 

be small (because of slow rotation), while turbulence makes the 
spectroscopic lines broad. 



Doppler measurement with integrated light

a clear comb structure = evidence for
low degree l high order n p-modes



Frequency

m
 / 

l

The inclination is determined by the averaged rotation rate, while 
the S-shape deviation from straight lines indicate latitudinal 
dependence of the internal rotation. 
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Visibility of rotational multiplets is highly sensitive to the stellar inclination.

Benomar, O., Masuda, K., Shibahashi, H., Suto, Y. 2014, PASJ, 66, 94



Credit: C. S. Jeffery



• In the case of early-type stars, the amplitudes of m-components 
may be dependent on the excitation mechanism, so may be 
different each other.

• In the case of early-type stars, there is a possibility of hybrid stars 
pulsating with both p- and g-modes. They may provide 
information from the core to the envelope.

• Let us look for good examples among the Kepler stars.

Some thoughts



An Example of Hybrid Stars
KIC11145123

Teff = 8050 +/- 200 K
log g (cgs) = 4.0 +/- 0.2

a hybrid 𝜹 Sct / 𝜸Dor star



KIC11145123

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102



KIC11145123

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102

p modesg modes



KIC11145123

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102

g modes



KIC11145123

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102

p modes
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Figure 12. Rotation kernels of our best model with 1.46M⊙ as functions of
fractional radius (upper panel) and their cumulative profiles (lower panel).
It is clear that the gmode (with l = 1 and n = −28) is strongly weighted
to the interior 10 per cent in radius (30 per cent in mass), and the dipolar
pmode (with l = 1 and n = 2) is strongly weighted to the outer envelope.
The quadrupolar mode (with l = 2 and n = −1) is sensitive to both the
core and the envelope, because it is a mixed mode. The gmode does not
sense the inner few per cent of the core because the core is convective. The
gmode and the quadrupolar mode are strongly trapped by the steep gradient
of the distribution of mean molecular weight, which is located in the range,
0.045 ! r/R ! 0.075 (see Fig. 7).

of the core rotation rate, and that the p-mode splitting constrains
the lower limit of the envelope rate. Combining these points, we
are led to the conclusion. Now the details of the argument follow.

(i) The frequency separations of the gmodes are not exactly half
of those of the pmodes, as has already been pointed out in section
2.3. In fact, if we pay attention to the p- and g-mode triplets with
the highest amplitudes (those centred on f = 1.418 d−1 in Table 2
and f = 18.366 d−1 in Table 1, respectively), whose frequencies
are determined most precisely, their splittings are given by

∆f(p) = 0.0101453 ± 0.0000023 d−1 (8)

and

∆f(g) = 0.0047562 ± 0.0000010 d−1 , (9)

giving

∆f(p)− 2∆f(g) = 0.0006329 ± 0.0000030 d−1 . (10)

Note that we generally put (p) and (g) to quantities that are as-
sociated with these (best-measured) dipolar p and gmodes in this
subsection. Since ∆f = δω/(2π), it can be claimed with strong
statistical significance that

δω(p) > 2δω(g) . (11)

(ii) The Ledoux constant, Cn,l, of high-order dipolar gmodes
is not exactly equal to 1

2
, but is a little smaller. This is because a

detailed asymptotic analysis of high-order dipolar gmodes shows
thatCn,1 approaches 1

2
from below [see equations (A24) and (A26)

in appendix A]. A consequence ofCn,1 < 1
2
with equations (3) and

(7) is that

2δω(g) = 2(1−Cn,1)Ω̄(g) > Ω̄(g). (12)

Namely, the upper limit of Ω̄(g) is given by 2δω(g). The corre-
sponding lower limit of the average rotation period is given by
105.13 ± 0.02 d.
(iii) If Cn,l > 0 for the pmode, the rotation rate in the envelope

is constrained from below. Assuming Cn,l > 0 in equation (3), it is
found

δω(p) = (1− Cn,l)Ω̄(p) < Ω̄(p). (13)

Therefore, the lower limit of Ω̄(p) is provided by δω(p). The cor-
responding upper limit of the average rotation period is given by
98.57 ± 0.02 d.
(iv) Equations (11), (12) and (13) lead to

Ω̄(p) > Ω̄(g), (14)

which implies the rotation rate of envelope layers that are probed
by the pmodes are on average higher than that of core layers that
are diagnosed by the gmodes. The corresponding average rotation
period of the envelope layers is at least 7 per cent shorter than that
of the core layers.

Some comments about the crucial assumption, Cn,l > 0, at
step (iii) above follow. Although it is generally possible to find an
eigenmode withCn,l < 0, such modes seem to be rare (e.g. Gough
2002). In fact, not a single mode with Cn,l < 0 has been found in
any of our evolutionary models in section 3, even if those that can-
not reproduce the observed frequencies are included. On the other
hand, we have confirmed that some low-order dipolar pmodes of
polytropic models with index higher than 3.9 have Cn,l < 0. How-
ever, the values are no less than about −0.002, whereas a value of
Cn,l ! −0.07 would be required to conclude Ω̄(p) ! Ω̄(g).

We stress once again that the above argument is based on only
conservative assumptions that are not influenced by detailed mod-
elling of the star and precise mode identification. For example, one
of our fundamental assumptions is that the pmode is more sensitive
to outer layers of the star than the gmode. This is generally true for
any pair of a pmode and a high-order gmode in any main-sequence
star. Moreover, although we rely on the identification of the gmode
as the one with l = 1 and a large radial order (|n| ≫ 1), the ex-
act value of n need not be specified, as is the case for the pmode.
Therefore, our conclusion of the higher rotation rate in the envelope
than in the core is robust.

4.3 Two-zone modelling

The robust conclusion obtained in the last subsection was made
possible by the structure of the rotation kernels. Independently of
the details of the model, the g-mode kernels are primarily confined
in the core, whereas the p-mode kernels have large amplitudes only
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Cn,l =
R R
0 �h(2�r+�h)r2�dr

R R
0 [�2
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The  Ledoux  constant  :  

High-order g-modes :
|𝞷r| ≪|𝞷h|

            then  Cnl        1/l(l+1)

High-order p-modes : 
|𝞷h| ≪|𝞷r|

then  Cnl        0

Cnl = 1/2   for l= 1
          1/6   for l=2



The observed splitting of g-modes is ~0.005 d-1,
while the observed splitting is ~0.01 d-1.  

So, it is concluded that the star is almost 
uniformly rotating with Prot ~ 100 d. This 
conclusion is model independent.



Two-zone model of internal rotation
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Figure 12. Rotation kernels of our best model with 1.46M⊙ as functions of
fractional radius (upper panel) and their cumulative profiles (lower panel).
It is clear that the gmode (with l = 1 and n = −28) is strongly weighted
to the interior 10 per cent in radius (30 per cent in mass), and the dipolar
pmode (with l = 1 and n = 2) is strongly weighted to the outer envelope.
The quadrupolar mode (with l = 2 and n = −1) is sensitive to both the
core and the envelope, because it is a mixed mode. The gmode does not
sense the inner few per cent of the core because the core is convective. The
gmode and the quadrupolar mode are strongly trapped by the steep gradient
of the distribution of mean molecular weight, which is located in the range,
0.045 ! r/R ! 0.075 (see Fig. 7).

of the core rotation rate, and that the p-mode splitting constrains
the lower limit of the envelope rate. Combining these points, we
are led to the conclusion. Now the details of the argument follow.

(i) The frequency separations of the gmodes are not exactly half
of those of the pmodes, as has already been pointed out in section
2.3. In fact, if we pay attention to the p- and g-mode triplets with
the highest amplitudes (those centred on f = 1.418 d−1 in Table 2
and f = 18.366 d−1 in Table 1, respectively), whose frequencies
are determined most precisely, their splittings are given by

∆f(p) = 0.0101453 ± 0.0000023 d−1 (8)

and

∆f(g) = 0.0047562 ± 0.0000010 d−1 , (9)

giving

∆f(p)− 2∆f(g) = 0.0006329 ± 0.0000030 d−1 . (10)

Note that we generally put (p) and (g) to quantities that are as-
sociated with these (best-measured) dipolar p and gmodes in this
subsection. Since ∆f = δω/(2π), it can be claimed with strong
statistical significance that

δω(p) > 2δω(g) . (11)

(ii) The Ledoux constant, Cn,l, of high-order dipolar gmodes
is not exactly equal to 1

2
, but is a little smaller. This is because a

detailed asymptotic analysis of high-order dipolar gmodes shows
thatCn,1 approaches 1

2
from below [see equations (A24) and (A26)

in appendix A]. A consequence ofCn,1 < 1
2
with equations (3) and

(7) is that

2δω(g) = 2(1−Cn,1)Ω̄(g) > Ω̄(g). (12)

Namely, the upper limit of Ω̄(g) is given by 2δω(g). The corre-
sponding lower limit of the average rotation period is given by
105.13 ± 0.02 d.
(iii) If Cn,l > 0 for the pmode, the rotation rate in the envelope

is constrained from below. Assuming Cn,l > 0 in equation (3), it is
found

δω(p) = (1− Cn,l)Ω̄(p) < Ω̄(p). (13)

Therefore, the lower limit of Ω̄(p) is provided by δω(p). The cor-
responding upper limit of the average rotation period is given by
98.57 ± 0.02 d.
(iv) Equations (11), (12) and (13) lead to

Ω̄(p) > Ω̄(g), (14)

which implies the rotation rate of envelope layers that are probed
by the pmodes are on average higher than that of core layers that
are diagnosed by the gmodes. The corresponding average rotation
period of the envelope layers is at least 7 per cent shorter than that
of the core layers.

Some comments about the crucial assumption, Cn,l > 0, at
step (iii) above follow. Although it is generally possible to find an
eigenmode withCn,l < 0, such modes seem to be rare (e.g. Gough
2002). In fact, not a single mode with Cn,l < 0 has been found in
any of our evolutionary models in section 3, even if those that can-
not reproduce the observed frequencies are included. On the other
hand, we have confirmed that some low-order dipolar pmodes of
polytropic models with index higher than 3.9 have Cn,l < 0. How-
ever, the values are no less than about −0.002, whereas a value of
Cn,l ! −0.07 would be required to conclude Ω̄(p) ! Ω̄(g).

We stress once again that the above argument is based on only
conservative assumptions that are not influenced by detailed mod-
elling of the star and precise mode identification. For example, one
of our fundamental assumptions is that the pmode is more sensitive
to outer layers of the star than the gmode. This is generally true for
any pair of a pmode and a high-order gmode in any main-sequence
star. Moreover, although we rely on the identification of the gmode
as the one with l = 1 and a large radial order (|n| ≫ 1), the ex-
act value of n need not be specified, as is the case for the pmode.
Therefore, our conclusion of the higher rotation rate in the envelope
than in the core is robust.

4.3 Two-zone modelling

The robust conclusion obtained in the last subsection was made
possible by the structure of the rotation kernels. Independently of
the details of the model, the g-mode kernels are primarily confined
in the core, whereas the p-mode kernels have large amplitudes only
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panel while the corresponding period spacings are drawn in the right panel. As the
sharp feature in N moves out in buoyancy radius, a periodic component shows up in ∆P
with a decreasing period in radial order as the star evolves.
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Fig. 3 Brunt-Väisälä frequency
N, hydrogen content X, and
period spacing !P in three
evolutionary states of a main
sequence 6 M⊙ star (Miglio et
al. 2008)

model with a moderate overshooting parameter of the or-
der of 0.1. Through a fitting of five identified modes in θ

Ophiuchi, Briquet et al. (2007) found a much larger over-
shooting parameter of 0.44. The situation is less conclusive
in other β Cephei stars. In 12 Lacertae for instance, Desmet
et al. (2009) found an upper limit of about 0.4 for αov while
Dziembowski and Pamyatnykh (2008) performed a prelim-
inary analysis with models computed without overshooting.
The case of ν Eridani is even more challenging. Pamyat-
nykh et al. (2004) advocate a small amount of overshooting
(αov ≤ 0.12) while Ausseloos et al. (2004) could not find
a satisfactory solution based on the fitting of four modes.
Although very promising, the status of overshooting in mas-

sive stars remains unclear at present. More observations are
needed with well-identified modes available, especially in
slowly rotating β Cephei stars, to help clarify the problem
of the extra-mixing in such stars.

6.2 Solar-like stars

Low mass stars (M ! 2 M⊙) have a convective envelope
which can stochastically excite acoustic modes. Here the
situation is drastically different from that of massive stars
since regularities in the frequencies are to be expected due
to the asymptotic behavior of the modes. In an analysis of
η Bootis, Di Mauro et al. (2003) showed how overshooting
(αov = 0.2) affects the echelle (or folded frequencies with
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Figure 3. Brunt-Väisälä frequency N, hydrogen abundance X and period spacing
∆P in three evolutionary states of a main sequence 6 M⊙ star (Miglio et al. 2008).

Extra-mixing changes the chemical composition profile. Il the star is massive
enough (M ! 2M⊙) for all nuclear reactions taking place inside the convective core,
the µ-gradient keeps the same profile, although at a larger radius, when an extra-mixing
is added. This means that the sharp feature in the Brunt-Väisälä frequency is similar in
shape but located further away from the center. As a function of the buyoancy radius, N
thus remains the same with no effect on the period spacing due to the extra-mixing. The
period in radial order is indeed related to the extent of the µ-gradient region and not to
its radial location. For a given X value however, the location in the Hertzsprung-Russell
diagram is different since the extra-mixing slows down the evolution.

For lower mass stars, nuclear reactions are still found outside the convective core
and extra-mixing not only moves out the radial onset of the sharp feature but also affects
its shape, which in turn changes the period of the oscillatory component. This effect
of extra-mixing is illustrated in figure 4 for a 1.6 M⊙ star. It is even more striking in
masses below 1.2 M⊙ since without extra-mixing the convective core soon disappears
during MS.
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Fig. 4 Same as in Fig. 3 for a
1.6 M⊙ star computed with
overshooting (αov = 0.2, thick
lines) and without overshooting
(thin lines) (Miglio et al. 2008)

respect to the large separation) diagram, although it was not
possible to draw a definitive conclusion in the present status
of observations. The CoRoT target HD 49933 poses an in-
teresting challenge. From data collected during the first 60
day run of the CoRoT mission, a beautiful comb-like spec-
trum typical of solar-like oscillations was obtained for which
two equally probable mode identifications have been pro-
posed (Benomar et al. 2009). The best model reproducing
the small frequency spacing has an overshooting parameter
of 0.7 with one identification and 0.2 with the other. It is
hoped that the long run observations of this star (150 days)
will discriminate between these identifications (Goupil et al.
2009).

The lack of a precise knowledge of global parameters
such as the mass, luminosity, and effective temperature is
most often the reason why these analyses cannot reach a
clear determination of the amount of overshooting. The best
candidates are thus binaries. Miglio et al. (2007) made a
theoretical analysis of the asteroseismic properties of the A
component (large and small separations, l = 0 − 1) of 12
Boötis with different assumptions of the amount of over-
shooting (αov = 0.06 to 0.037). Although the B component
remains a main sequence star in all cases, the A component
can be either near the end of the main sequence or already
in a post main sequence state with drastic differences in the
large and small separations. The binary system α Centauri
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hoped that the long run observations of this star (150 days)
will discriminate between these identifications (Goupil et al.
2009).

The lack of a precise knowledge of global parameters
such as the mass, luminosity, and effective temperature is
most often the reason why these analyses cannot reach a
clear determination of the amount of overshooting. The best
candidates are thus binaries. Miglio et al. (2007) made a
theoretical analysis of the asteroseismic properties of the A
component (large and small separations, l = 0 − 1) of 12
Boötis with different assumptions of the amount of over-
shooting (αov = 0.06 to 0.037). Although the B component
remains a main sequence star in all cases, the A component
can be either near the end of the main sequence or already
in a post main sequence state with drastic differences in the
large and small separations. The binary system α Centauri

Figure 4. Same as Fig. 1 for a 1.6 M⊙ star computed with extra-mixing (α = 0.2,
thick lines) and without extra-mixing (thin lines) illustrating the impact of a change
in the shape of the X-profile (Miglio et al. 2008).

If the extra-mixing results from a diffusive process, such as for instance a ro-
tationally induced mixing, the sharp feature in the Brunt-Väisälä frequency becomes
smoother. Although the periodic component in ∆P still exists, its amplitude is now

The period separation is sensitive to the chemically inhomogeneous zone.
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Evolutionary stage of the star

Useful information : 
• Period separation of g-modes —- sensitive to the 𝝻-zone
• Frequencies of singlet p-modes

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102



Another similar hybrid 𝜹Sct / 𝛄Dor star :
KIC 9244992

Saio, H., Kurtz, D.W., Takata, M., Shibahashi, H., Murphy, S.J., 
Sekii, T., Bedding, T.R. 2015, MNRAS, 447, 3264 



• Internal rotation of stars became an observational astronomy.
• Two examples of the main-sequence stars were found to be 

almost uniformly rotating from core to surface, model 
independently.

The impacts
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panel while the corresponding period spacings are drawn in the right panel. As the
sharp feature in N moves out in buoyancy radius, a periodic component shows up in ∆P
with a decreasing period in radial order as the star evolves.
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Fig. 3 Brunt-Väisälä frequency
N, hydrogen content X, and
period spacing !P in three
evolutionary states of a main
sequence 6 M⊙ star (Miglio et
al. 2008)

model with a moderate overshooting parameter of the or-
der of 0.1. Through a fitting of five identified modes in θ

Ophiuchi, Briquet et al. (2007) found a much larger over-
shooting parameter of 0.44. The situation is less conclusive
in other β Cephei stars. In 12 Lacertae for instance, Desmet
et al. (2009) found an upper limit of about 0.4 for αov while
Dziembowski and Pamyatnykh (2008) performed a prelim-
inary analysis with models computed without overshooting.
The case of ν Eridani is even more challenging. Pamyat-
nykh et al. (2004) advocate a small amount of overshooting
(αov ≤ 0.12) while Ausseloos et al. (2004) could not find
a satisfactory solution based on the fitting of four modes.
Although very promising, the status of overshooting in mas-

sive stars remains unclear at present. More observations are
needed with well-identified modes available, especially in
slowly rotating β Cephei stars, to help clarify the problem
of the extra-mixing in such stars.

6.2 Solar-like stars

Low mass stars (M ! 2 M⊙) have a convective envelope
which can stochastically excite acoustic modes. Here the
situation is drastically different from that of massive stars
since regularities in the frequencies are to be expected due
to the asymptotic behavior of the modes. In an analysis of
η Bootis, Di Mauro et al. (2003) showed how overshooting
(αov = 0.2) affects the echelle (or folded frequencies with
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Figure 3. Brunt-Väisälä frequency N, hydrogen abundance X and period spacing
∆P in three evolutionary states of a main sequence 6 M⊙ star (Miglio et al. 2008).

Extra-mixing changes the chemical composition profile. Il the star is massive
enough (M ! 2M⊙) for all nuclear reactions taking place inside the convective core,
the µ-gradient keeps the same profile, although at a larger radius, when an extra-mixing
is added. This means that the sharp feature in the Brunt-Väisälä frequency is similar in
shape but located further away from the center. As a function of the buyoancy radius, N
thus remains the same with no effect on the period spacing due to the extra-mixing. The
period in radial order is indeed related to the extent of the µ-gradient region and not to
its radial location. For a given X value however, the location in the Hertzsprung-Russell
diagram is different since the extra-mixing slows down the evolution.

For lower mass stars, nuclear reactions are still found outside the convective core
and extra-mixing not only moves out the radial onset of the sharp feature but also affects
its shape, which in turn changes the period of the oscillatory component. This effect
of extra-mixing is illustrated in figure 4 for a 1.6 M⊙ star. It is even more striking in
masses below 1.2 M⊙ since without extra-mixing the convective core soon disappears
during MS.
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Fig. 4 Same as in Fig. 3 for a
1.6 M⊙ star computed with
overshooting (αov = 0.2, thick
lines) and without overshooting
(thin lines) (Miglio et al. 2008)

respect to the large separation) diagram, although it was not
possible to draw a definitive conclusion in the present status
of observations. The CoRoT target HD 49933 poses an in-
teresting challenge. From data collected during the first 60
day run of the CoRoT mission, a beautiful comb-like spec-
trum typical of solar-like oscillations was obtained for which
two equally probable mode identifications have been pro-
posed (Benomar et al. 2009). The best model reproducing
the small frequency spacing has an overshooting parameter
of 0.7 with one identification and 0.2 with the other. It is
hoped that the long run observations of this star (150 days)
will discriminate between these identifications (Goupil et al.
2009).

The lack of a precise knowledge of global parameters
such as the mass, luminosity, and effective temperature is
most often the reason why these analyses cannot reach a
clear determination of the amount of overshooting. The best
candidates are thus binaries. Miglio et al. (2007) made a
theoretical analysis of the asteroseismic properties of the A
component (large and small separations, l = 0 − 1) of 12
Boötis with different assumptions of the amount of over-
shooting (αov = 0.06 to 0.037). Although the B component
remains a main sequence star in all cases, the A component
can be either near the end of the main sequence or already
in a post main sequence state with drastic differences in the
large and small separations. The binary system α Centauri
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Figure 4. Same as Fig. 1 for a 1.6 M⊙ star computed with extra-mixing (α = 0.2,
thick lines) and without extra-mixing (thin lines) illustrating the impact of a change
in the shape of the X-profile (Miglio et al. 2008).

If the extra-mixing results from a diffusive process, such as for instance a ro-
tationally induced mixing, the sharp feature in the Brunt-Väisälä frequency becomes
smoother. Although the periodic component in ∆P still exists, its amplitude is now

The period separation is sensitive to the chemically inhomogeneous zone.
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Dramatic development of 
Asteroseismology of Red Giants

gravity wave：buoyancy as restoring force

buoyancy: stratification of light element above heavy element layer

practically, gravito-acoustic wave

Christensen-Dalsgaard, J. 2012, ASPC, 462, 505
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Bedding T.R. et al. 2011, Nature 471 608
Beck P. et al. 2011, Nature doi:10.1038/nature10612

mixed mode :
l=1 modes are sensitive 
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Fig. 1.— Upper panel: density distribution and the ` = 1 propagation diagram for a 1.5 M�

star with radius ⇠ 12 R� at two different evolutionary states: ascending red giant branch (RGB,
left) and core He-burning (He-B, right). Horizontal dotted lines denote the frequency domain of
solar-like oscillations. Solid line is Brunt-Väisälä frequency, and dashed lines correspond to the
Lamb frequency for ` = 1. Dash-dotted lines correspond represent density, and the corresponding
scale is in right axes. Lower panels: corresponding plots of inertia (E) as a function of frequency
for `=0 (circles) and 1 (triangles) modes (dashed vertical lines). Grey crosses and lines represent
the values of period separation between consecutive dipole modes as a function of frequency. The
period spacing is indicated on the right axis , and horizontal small dashed lines correspond to
h�P ia. In addition of the presence of a small convective core (rcc ' 0.002 R and mcc ' 0.08M ),
the central density of the two models differs by a factor ten(five?). Note that, due to the electron
degeneracy, in the region between 0 and 0.002R

T

, where the He-B models present a convective
core, the value of N in the RGB model is significantly lower than near the H-burning shell.

Figure 6. Upper panel: density distribution and ℓ = 1 propagation diagram for a
1.5 M⊙ with a radius of ∼ 12R⊙ when ascending the RGB (left) and during core He-
burning (right). The density (dashed-dotted line) scale is on the right vertical axis.
Lower panel: Inertia as a function of frequency for ℓ = 0 (circles) and 1 (triangles)
modes. The expected range of solar-like oscillations is in between the dashed vertical
lines. Grey crosses and lines represent the period spacing between consecutive dipole
modes (scaled on the right axis) as a function of frequency. Horizontal dotted lines
stand for the asymptotic period spacing ∆Pa (Montalbán et al. 2013).

of figure 6. Such a clear distinction is indeed observed in red giants observed by CoRoT
(Mosser et al. 2011) and by Kepler (Bedding et al. 2011).

Both the pattern of dipoles modes and the ranges of period spacings thus appear to be
powerful indicators of the evolutionary state of a red giant with given ∆ν and νmax.

2.3. Red Giants as Age Indicators

Another important issue is the estimation of ages in red giants. Although slightly model
dependent, the age of a red giant is essentially determined by its mass. Contrary to MS
stars, red giants in the low mass range (0.5 ≤ M ≤ 2.5M⊙) show a very tight age-mass
relation, illustrated in figure 7, especially if the metallicity, indicated by a color code,
and the evolutionary state, shown by different symbols, are known.

This close relationship is related to the fact that, in low mass stars, an extra-mixing
during MS increases the MS lifespan but it also forms a larger inert helium core at
the end of MS. This isothermal core is thus closer to the Schönberg-Chandrasekhar
limit and the crossing of the Herzsprung-Russell diagram proceeds more quickly. The
increased MS lifespan is compensated by a shorter subgiant phase and when reaching
the red giant branch, the age is only very weakly affected by an extra-mixing during
MS. With the mass derived from seismic analyses, the age immediately follows. If the
metallicity and the evolutionary state are known, the uncertainty in age does not exceed
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Figure 4. (a) Median ∆P for each star versus its ∆ν (based on 0.2 µHz smoothing
of the frequency spectra). Red giant branch (RGB), red clump (RC), and secondary
clump (2ndRC) stars are indicated. The data behind the figure are available from the
online version of Stello et al. (2013). (b) Curves show ∆Pg from theoretical models
using MESA. Filled dots are separated by 10 Myrs. Arrows indicate evolutionary
direction. Masses of each track are indicated and their colors follow that of panel
(a). The helium-burning ZAMS is marked by diamonds for each mass. The evolution
from core to shell helium burning for the 1 M⊙ model is shown by the blue dashed
line. (c) Same as panel (b), but for 1 M⊙ tracks of three different values of the heavy
element abundance.

Stello, D., Huber, D., Bedding, T. R., et al. 2013, in ASP Conf. Ser., 479, 167
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Figure 4. (a) Median ∆P for each star versus its ∆ν (based on 0.2 µHz smoothing
of the frequency spectra). Red giant branch (RGB), red clump (RC), and secondary
clump (2ndRC) stars are indicated. The data behind the figure are available from the
online version of Stello et al. (2013). (b) Curves show ∆Pg from theoretical models
using MESA. Filled dots are separated by 10 Myrs. Arrows indicate evolutionary
direction. Masses of each track are indicated and their colors follow that of panel
(a). The helium-burning ZAMS is marked by diamonds for each mass. The evolution
from core to shell helium burning for the 1 M⊙ model is shown by the blue dashed
line. (c) Same as panel (b), but for 1 M⊙ tracks of three different values of the heavy
element abundance.

Stello, D., Huber, D., Bedding, T. R., et al. 2013, in ASP Conf. Ser., 479, 167



B. Mosser et al.: Mixed modes in red giants: a window on stellar evolution

p2
A

p2

2

2

p2
A2A

R

2

p2

p2 2

2

2
A

2

2

2

2A

A
A

2

p2
2

2

22

A

22

2

p2

2

R

A
A

2

p2

2

p2
p2

A
A

2
2

2

2
p2

2
AA p2

A

2

A

2

p2

2

A 2A

2

2
2

A

2
2

2
2

2

A

2

2
2

R

p2

2

2

2
2

2

A

2
2

p2 2
2

A

R

Ap2

2

2
p2

p2
2

A
A

?

2

p2
2

R
R

R

2

2
A

2

A
A 2

2

2 2

2

2
A

p2
2

2p2

A
A

p2

2

R

A

R

A
A

2

R

A 2

2

R

A 2

p2
A 2

2

R

2

A
2

p2

R

R

p2

R

R

p2

A A

p2

2

R

p2 2
A

R
R

p2

p2

22p2
2

2

p2

R

A

R

A AA

A

A

RR

2p2 p2

A

R

f

A 2
2

R

A

R R

2

R

2

R

A
2

p2

R

A

R

A

R

R R

A
p2

R

R

A2
A2A

R

R

C
C 2

C
C

2
p2

R
RR

C

R

2

R
R

R

C

R

C

C

C
C

R R

R

R
R

C

R

C 2

R R
RRR

C

R

R

C

R

R
R

C

?

C

RR

2

R

R

R

f

R

C C

R

p2

C

f
C

R

C
C

p2

C C

C

C C

R

C

R

RR
R

R

C

A

R R

R
RR

C

R
R

R

R

f

C

R
R

C

R
R

C

R

C
f

C
C

R

R

C

R
R

C

R

R

C

R

R
R

R RR

C

R

C

R

C

RR
R

R R

A

RR

C

f

C

R
R

CCCC

R
R

C CC

R

R
R

C
CC

C

C
C

C

R

C

f

f

R

CC

C

C

R

C

R

C

R

C

R
R

C

R

C

R

C

RR

C

C
C

RR

R

R
R

C C

C

R

C
C

R

R

C
C

C
C

R

CC

R

C
C

R
R

C
C

R

C

RR
R

C
C

CCC

R

S

C

RR
R

C

C
C

R

R

R

C
C

C

R

C

R

CC
C

RR
RR

C

R
R

R

R

C
CC

RR

C
C

C
CC

C

R

R

R

R

f

R

C

R

C

f

C
C

R

C

R

C

R

C C

RR

R

S

C
C

RR

C

R
R

C
C
C

C

R

C

R

C

R

C

C

R

C

S

R
R

R
R

C

R

C
C

R

f

C

RR

A

C
f

R

C

R

C

R

R
RR

R

C
C

C
C

R

R

C C

R

C

R
R

R

CC

R

R

R

C
C

R

CCC

R

R

CC

R

CC

R

R
R

C
CC

R

CC

A

C

S

C

CC
C

R

R

R
R

R

f

R

C

C

R

C

R

C

R

C

RR

C

R

C
C

R R
R

R

R

R

R

R

A

C CCC

R

C

R

C

R

C

CC

C
C

C

A

C

R

A

S

C

C

R

C
C

A

R
R

C
C

R

C
C

C

C
CC

C
C

C

RR

R

R
R

R

C

R
R

C

C

R

R
R

R

C
C
C

R

C C

R

A

C

R

R R

S

R

A

R

R R

C
C

C

R

A

C

R

C

R

C

R

C

C

C

S
C

R

S

R

C

R

A

C

R

R
R

C

R
R

C

R
R RR

C
C

R

S

R

C

R

R

CC

S

R

C
C

S

C

S

R
R

R

C
CC

C

C

C

C

R

R

C

A

C

R

A

R

CC C

R
R

R

R

C

R

A

C

R

R

C C
C

CC

R

C

R

CCC
C

R

S

R
R

C
C C

R

C

S

C

C

C

R

R
R

R
R

R

C

C
C

C
CC

R

C

R

C

S

C
C

R

C
S

R

S

C
C

C

R
R

R

C

R

S

C

R

C

C

R

C

C

R

S

R

RR

C

C

C

R
R

C
C

R

CC

R R

C
C C

C

S

C

S

C
C

C

R
R

C

A

C
C

C

R

C
C

C

RR

CC C

S

C

R

S
C

CCC

S

f

R

C

C
C

C
CCCC

R

C

C

C C

R

C

S

C

R

C

CC

R

CC C

R

C

CC

R

C

C

R

R

C

R

S

C
C
C
CC

CC
C S

R

C

A

R

CC

R

C

C

C

R

C
C

C

C

R

S

C
C

S

C
C

C
S

C

C

R

C C

C

C
CC

S

C
C

S

C
C

C

C

R

A

C

C
CC

C

C CCC CC

R

C

CC C
CC C

C

S

C

C

C
C

R

C
CCC
C

C
CC C

C

S

CC
C

C C

A

S

C

C

CCC

C

C
CC
C

C

C

C

C
CCC

CC

C

R

C
C
C
CC
CC

C

CC

A

S

C

A

C

A

R

C
C

f

C
C

R

C
C

AA

C
CC

C

A

C

S

A

CC

C

C
C

R

C
C

C

R

CC

R

A

CC

A

C
C

S

C

A

C C
C C
C

A

CC
C C

A
A

R

C C
CC

C

R

R

C

R

C
C

C
C

C
C C

C

C
C

C

C

C
CCC

C CC
C

CC
CC

C

C
CCC

C

C

C

A

A

C

CC
CCC
C
C

C

C

A
C

p2

A

p2

2

2

p2

A 2
A

2

p2

p2
2

2

2

A

2

2

2

2A

A

A

2

p2

2

2

2
2

A

2 2

2

p2

2

A

A

2

p2

2

p2

p2

A

A

2

2

2

2

p2

2

A
A p2

A

2

A

2

p2

2

A 2A

2

2

2

A

2

2

2

2

2

A

2

2

2p2

2

2

2

2

2

A

2
2

p2 2

2

A A
p2

2

2

p2

p2

2

A

A

?

2

p2

2
2

2

A

2

A

A
2

2

2
2

2

2

A

p2

2

2
p2

A

A

p2

2

A
A

A

2

A 2

2

A

2

p2

A
2

2 2

A

2

p2

p2

p2

A
A

p2

2

p2 2

A

p2

p2

22
p2

2

2

p2
A

A
A

A

A

A

2
p2

p2

A

A
2

2

A
2

2
A

2

p2

A A
A

p2

A
2

A2
A

C

C 2

C

C

2

p2

C
2

C

C

C

C

C

C
C 2

C

C

C

?

C

2

f

C C

p2

C

f

C

C

C

p2

C C

C

C

C

C

C

A

C

f

C

CC

C

f

C

C
C

CC

C

C

C

A C

f

C
C

C
C

C

C
C
C

C

C C

C

C

C

C

C

f

f

CC

C

C

C

C

C

C

C

C

C

C

C
C C

CC

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

CC
C

C

C

C

C

C
C

C

C

C

C
C

C

f C

C

f

C

C
C

C

C
CC

C
C

C

C

C

C

C
C

C

C

CC

C

C

f

C

A

C

f

C

C

C

C

C

C

C
C

C
C C

C

C

C
C

C
C

C
CC

C

CC

C
C

A

C

C

CC

C

f

C

CC

C

C

C

C

C

A

C C
C
C

CC

C

C
C

C

C

C

A

C

A

C

C

C

C

A

C

C
C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C C

A

C

A

C

C

C

A

C

C

C

C

C

C

C

C

A

C
C

C

C

C

C

CC
C

C
C

C

CC

C

C

C

C

C

A

C

A

C
C C

C

A

C

C C

C

CC

C

C
CC

C

C

C
CC

C

C

C

C

C

C

C

C
C
CC C

C CC

C

C
CC

C

C

C

C

C

C

C

C

C

CC

C

C C

C

C

C

C

C

C

A

C

C

C
C

C

C

CC C
C

C

C
C

C

f

C

C

C

C

C C
C C

C

C

C C

C

C

C

CC

C
C

C

C

C
C

C

C

C

C

C

C

CC

C

CC
C

A

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

CC

C

C

C

A

C

C

CC

C

C

C
C

C C C

C

CC
C

C
C C

C C

C

C

C

C

C
C

C

C

C

CC

C

C

C

C

C

C
C

A

C

C

C CC

C

C

C
C

C

C

C

C

C

C
C

C

C
C

C

C

C

C

C
C

C
C

C

C
C

A

C

A

C

A

C

C C

C

C

C

A
A

C

C

C

C

A

C

A

C

C

C

C

C

C

C

C

CC

A

C
C

A

C

CC

A

C C

C
C

C

A

CC

C
C

A

A

C
C

CC

C

C

C

C

C
C

C

C C

C

C

C

C

C

C

CC
C

C CC

C

C
C

C C

C

C

CCC

C

C

C

A

A

C

CC

CC

C

C

C

C

C

A

C

Fig. 1. Period spacing ∆Π1 as a function of the frequency spacing ∆ν. Top: the seismic proxy for the stellar mass is indicated by the color code.
The evolutionary states are indicated by S (subgiants), R (RGB), f (helium subflash stage), C (red clump), p2 (pre secondary clump), 2 (secondary
clump), and A (stars leaving the red clump moving toward the AGB). The error boxes on the right side indicate the mean uncertainties, as a
function of ∆Π1, for stars on the RGB; for clump stars, uncertainties are indicated on the left side. Dotted lines indicate the boundaries between
evolutionary stages. Bottom: zoom in the red-clump region. Data used in this figure are available at the CDS.

3.3. Structure of the red clump

When the helium core of a low-mass star on the RGB reaches
about 0.47 M⊙, runaway ignition in degenerate conditions

produces the helium flash, which very rapidly transports the star
from the tip of the RGB to the red clump (Salaris et al. 2002).
The highest mass a star can have to undergo the helium flash is
1.9 M⊙, with an uncertainty of about 10%. We did not take into

L5, page 3 of 5

Period spacing as a function of frequency spacing

Mosser, B., Benomar, O., Belkacem, K., et al. 2014, A&A, 572, L5



• Dipole (l=1) mixed modes are very helpful to extract 
information of the deep interior of red giants. 

• RGB and RC are distinguishable by asteroseismology, 
though they are overlapped each other on the HR 
diagram.

Running Summary (a)



S. Deheuvels et al.: Constraints on the internal rotation profiles of six Kepler red giants

Table 1. Global seismic parameters of the selected targets and estimates of the stars’ masses, radii, and surface gravity inferred from scaling
relations.

Star Ref. letter ∆ν (µHz) νmax (µHz) M R log g

KIC 12508433 A 45.3 ± 0.2 793 ± 21 1.20 ± 0.16 2.20 ± 0.10 3.83 ± 0.04
KIC 8702606 B 39.9 ± 0.4 664 ± 14 1.27 ± 0.15 2.44 ± 0.11 3.77 ± 0.02
KIC 5689820 C 41.0 ± 0.3 695 ± 15 1.11 ± 0.16 2.29 ± 0.12 3.76 ± 0.04
KIC 8751420 D 34.7 ± 0.4 598 ± 14 1.50 ± 0.20 2.83 ± 0.15 3.71 ± 0.03
KIC 7799349 E 33.7 ± 0.4 561 ± 8 1.33 ± 0.14 2.77 ± 0.12 3.68 ± 0.02
KIC 9574283 F 30.0 ± 0.5 455 ± 8 1.24 ± 0.17 2.92 ± 0.17 3.60 ± 0.02

has been shown by Appourchaux et al. (2012) that the mode
linewidths increase very rapidly with increasing temperature
(Γ ∝ T s

eff , with s ∼ 16). As a result, only the cooler targets
have narrow enough modes to make the rotational splittings
of the modes clearly visible.

– We restricted ourselves to stars that are not too evolved.
Indeed, the core of subgiants and young red giants is less
dense than that of more evolved star, which makes their ro-
tational splittings more sensitive to the rotation in other re-
gions than the innermost layers. In addition, young red gi-
ants can be modeled by using existing fitting procedures.
For these stars, the combined knowledge of the large sep-
aration of acoustic modes ∆ν and the period spacing ∆Π1
of l = 1 gravity modes can yield precise estimates of the
stellar mass and age for a given set of input physical param-
eters. This can be used to model these stars (Deheuvels &
Michel 2011). For more evolved red giants, the relation be-
tween ∆ν, ∆Π1, and the stellar mass becomes degenerate (for
a given large separation ∆ν, a large change in mass induces
almost no change in ∆Π1). This degeneracy occurs for stars
whose mean large separation is below a threshold limit that
varies between 30 and 40 µHz depending on the stellar mass
(Mosser et al. 2012c). We therefore retained only stars with
⟨∆ν⟩ > 30 µHz.

We found six Kepler targets that satisfy these criteria simulta-
neously. They are listed in Table 1. For clarity, these stars are
referred to throughout with letters A through F, as specified in
Table 1. The seismic properties of these targets are discussed in
detail in Sect. 3. However, preliminary information on the stars
can already be obtained from their mean large separation ⟨∆ν⟩
and the frequency of maximum power of their oscillations νmax.
Indeed, scaling relations were proposed between these global
seismic parameters and stellar properties such as the mass, ra-
dius, and surface gravity (Brown et al. 1991). These scaling re-
lations rely on the hypothesis that there exists a relation between
νmax and the acoustic cut-off frequency. From observations, these
scaling relations have been empirically verified to work at the
level of a few percent at least (Huber et al. 2011; Silva Aguirre
et al. 2012). Belkacem et al. (2011) recently proposed a theoret-
ical explanation for this relation. We applied these scaling rela-
tions to the stars of our sample using the values of ⟨∆ν⟩ and νmax
that were obtained by Chaplin et al. (2014) for these stars (see
Table 1). We thus obtained first rough estimates of the masses,
radii, and log g of the six stars, which are given in Table 11.
Figure 1 shows the location of the selected targets in an aster-
oseismic HR diagram (large separation plotted as a function of
the effective temperature). The stars of our sample are roughly in

1 We note that to apply these scaling relations, estimates of the ef-
fective temperatures of the stars are also required. We here used the
spectroscopic estimates that are obtained in Sect. 4 of this paper.

Fig. 1. Location of the selected targets in a seismic HR diagram (mean
large separation ∆ν against effective temperature). The blue filled stars
indicate the six targets selected in our sample and the gray diamonds
correspond to the set of Kepler targets studied by Chaplin et al. (2014).
The dashed lines indicate evolutionary tracks of models of different
masses and solar metallicity.

the same evolutionary state (3.59 ! log g ! 3.83), and they lie
either at the end of the subgiant branch or at the base of the RGB.
The absence of younger subgiants is caused by the fact that they
are hotter. As a result, their modes have larger linewidths and it
is much harder to extract their rotational splittings.

3. Seismic properties

The frequencies of the oscillation modes bear information about
the internal structure of a star, and in particular about its inter-
nal rotation. Indeed, rotation is known to lift the degeneracy be-
tween the non-radial modes of same radial order n and degree
l but different azimuthal order m, thus forming rotational multi-
plets. For slow rotators, the effects of the centrifugal force can be
neglected, and if we furthermore assume that the rotation profile
is spherically symmetric, the frequency of the (n, l,m) mode can
be written as νn,l,m = νn,l,0 + mδνn,l, where δνn,l is known as the
rotational splitting and can be expressed as a weighted average
of the rotation profile Ω(r)

δνn,l ≡
∫

Kn,l(r)Ω(r)
2π

dr. (1)

The functions Kn,l(r), known as the rotational kernels, essentially
depend on the mode eigenfunctions.

Our goal in the analysis of the oscillation spectra of the stars
was twofold:

1. estimating the mode frequencies to use them as observables
for the modeling of the stars (see Sect. 5); this requires first
to identify the modes in the oscillation spectra;
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Fig. 2. Échelle diagrams of the stars from our sample. The mean large separations that were used to build the diagrams are specified in Table 1.
For more clarity, the power spectra were binned over a 0.25 µHz boxcar and clipped at a maximum of 20 to 40 times the noise level.

one star to another for red giants (Mosser et al. 2012a; Benomar
et al. 2013). The mode heights were thus left free in our fits.

3.3.2. Results

Two types of fits of the PSD were performed to estimate the
mode frequencies and splittings. Six independent teams fol-
lowed a frequentist approach and used the MLE method, as is
commonly done for the analysis of stochastically excited modes.
The main difference between these analyses lies in the initial

guesses taken for the mode parameters and the type of fitting
that was chosen: either a global fit (all the modes are fitted si-
multaneously) as prescribed by Appourchaux et al. (2008), or
a local one (modes are fitted individually), as was done for the
Sun (Anderson et al. 1990). Apart from the computational time
(which is much shorter for local fits), the only difference be-
tween the two approaches is that local fits consider the inclina-
tion angle as a free parameter for each mode, whereas the angle
is common to all modes in global fits. This enabled us to check
the robustness of the optimal angle that is obtained from global
fits. One other team fitted the PSD by using a Bayesian approach
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Table 13. Estimates of the mean rotation rate in the g-mode cavity ⟨Ωg⟩, the mean rotation rate in the p-mode cavity ⟨Ωp⟩, and the ratio between
these quantities obtained from the coefficients of the δν(ζ) relation (see Sect. 6.1) or from OLA inversions (see Sect. 6.2).

Star ⟨Ωg⟩/(2π) (nHz) ⟨Ωp⟩/(2π) (nHz) ⟨Ωp⟩/⟨Ωg⟩
δν(ζ) OLA δν(ζ) OLA δν(ζ) OLA

A (KIC 12508433) 505 532 ± 79 227 213 ± 26 2.2 2.5 ± 0.7
B (KIC 8702606) 619 629 ± 109 263 164 ± 17 2.4 3.8 ± 1.1
C (KIC 5689820) 917 865 ± 35 109 125 ± 13 8.4 6.9 ± 1.0
D (KIC 8751420) 1620 1540 ± 50 109 102 ± 24 14.8 15.1 ± 4.0
E (KIC 7799349) 1323 1313 ± 26 86 122 ± 15 15.4 10.7 ± 1.5
F (KIC 9574283) 1640 1556 ± 22 26 74 ± 28 64.1 21.0 ± 8.2

Notes. ⟨Ωg⟩ represents the average rotation rate in the g-mode cavity (innermost 1.5% to 2.5% of the star) and ⟨Ωp⟩ a weighted average of the
rotation rate in the p-mode cavity, which can be regarded as an upper limit of the rotation rate in the convective envelope (see text).

Fig. 6. Evolutionary tracks of the best-fit models for stars A to F in the
HR diagram. The current location of the model in the HR diagram is
indicated by a filled circle.

where l is the degree of the mode, ξr and ξh are the radial and
horizontal displacements, and ra and rb are the inner and outer
turning points of the g-mode cavity. A value of ζ close to 1 indi-
cates that the mode is mainly trapped in the g-mode cavity (and
thus in the core for our stars), and a value of ζ close to 0, that
it is trapped in the p-mode cavity. It is clear from Fig. 7 that the
splittings of g modes are larger than those of p modes, indicating
that the core rotates faster than the envelope in these stars, as was
found in previous studies of this type (Beck et al. 2012, D12).

There is a roughly linear relation between the rotational split-
tings of l = 1 modes and the ratio ζ. This phenomenon was the-
oretically explained before by Goupil et al. (2013). We note that
for star E, the splittings obtained for the two highest-frequency
l = 1 modes (modes around 670 and 698 µHz, plotted in gray
in Fig. 7) lie well outside this linear relation. None of the ro-
tation profiles tested in this study were able to account for the
fitted splittings of these modes. In fact, these high-frequency
modes have a large linewidth, and a possible explanation might
be that they are too wide to reliably determine their rotational
splittings. This should appear more clearly when longer time-
series are available from Kepler observations. In the following,
the splittings of these two modes were excluded from the sets of
splittings that were used to perform the inversions.

Goupil et al. (2013) showed that the coefficients of the lin-
ear relation δν(ζ) for l = 1 modes can be used to obtain esti-
mates of the mean rotation rate in the g-mode cavity ⟨Ωg⟩ and
the mean rotation rate in the p-mode cavity ⟨Ωp⟩. By combining
their Eqs. (21) and (22), we obtain

δν = ζ

(
1
2

〈
Ωg

2π

〉
−

〈
Ωp

2π

〉)
+

〈
Ωp

2π

〉
· (4)

We thus fitted a relation of the type δν = Aζ + B to the observed
splittings of l = 1 modes for the six stars (see Fig. 7). From
Eq. (4), we derive ⟨Ωg/(2π)⟩ = 2(A+ B) and ⟨Ωp/(2π)⟩ = B. We
note that for more evolved red giants, the contribution from the
envelope to the rotational splittings becomes negligible and reli-
able estimates of ⟨Ωp⟩ cannot be obtained from the δν(ζ) relation
(Goupil et al. 2013). The obtained results are given in Table 13.
There are clear trends with the evolutionary status, suggesting
that ⟨Ωg⟩ increases and ⟨Ωp⟩ decreases as stars evolve at the
base of the red giant branch, resulting in an increase of the ratio
⟨Ωg⟩/⟨Ωp⟩. These trends are discussed in Sect. 7.

By using the rotational splittings of the modes that were ob-
tained in Sect. 3 and the rotational kernels of the best stellar
models from Sect. 5, we applied several inversion techniques to
probe the rotational profiles of the six stars of our sample. The
results presented below were obtained using the best-fit models
of CESAM2K. However, all the inversions were also performed
using the best models of ASTEC and yielded results that are quan-
titatively very similar.

6.2. Core and envelope rotation

We first tried to obtain localized constraints on the rotation pro-
files of the selected targets. For this purpose, the OLA (opti-
mally localized averages) method is particularly well suited. The
OLA method consists of forming combinations of the rotational
kernels such that the resulting averaging kernels K(r; r0) =∑

k ck(r0)Kk(r) are as localized as possible around a target point
r0. Note that for clarity, we now use the subscript k = 1,M for
the modes whose splittings we were able to determine, instead of
their order n and degree l. If the averaging kernel is sufficiently
well localized around r0, then it is straightforward to obtain an
estimate of the rotation rate at depth r0 through the relation

2π
∑

k

ck(r0)δνn,l =
∑

k

ck(r0)
∫ R

0
Kk(r)Ω(r) dr

=

∫ R

0
K(r; r0)Ω(r) dr

≈ Ω(r0). (5)

The coefficients ck(r0) were searched so that the averaging kernel
K(r; r0) approached the Dirac function δ(r − r0) as closely as
possible. For this purpose, Backus & Gilbert (1968) advocated
minimizing the function

J = 12
∫ R

0
K(r; r0)2(r − r0)2 dr + γ

M∑

k=1

[
ck(r0)σδνk

]2 (6)
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Fig. 7. Observed splittings (open symbols) for modes of degrees l = 1 (circles) and l = 2 (squares), plotted as a function of the parameter ζ,
which indicates the trapping of the modes (a value of ζ closer to 0 indicates a p-dominated mode, whereas a value of ζ closer to 1 indicates a
g-dominated mode). The dashed lines indicate linear regressions of the relation between the splittings of l = 1 modes and the parameter ζ. Gray
symbols indicate suspicious measurements that were not taken into account (see text).

for each point r0 considered by requiring that the integral of the
averaging kernel be unity. Here, γ is a trade-off parameter be-
tween resolution of the averaging kernel and error magnifica-
tion, and the σδνk are the measurement errors of the rotational
splitting estimates. As was pointed out by D12, it is very hard to
obtain localized averaging kernels in our case, and we therefore
took γ = 0.

Since the modes are mixed, their rotational kernels have a
contribution both from the core, due to their g-mode character,
and from the envelope where they behave as p modes. The ratio
between these contributions depend on where the modes are pre-
dominantly trapped. Because of the shape of the mode kernels,
it was impossible with the set of modes at our disposal to build
averaging kernels that are well localized at intermediate depths

inside the star, and we were therefore unable to invert the whole
rotation profile throughout the star. But we obtained estimates of
the rotation rate in the core and the envelope.

6.2.1. Core rotation

By minimizing the function J defined by Eq. (6) for values of r0
between 0 and 0.02 R, we obtained averaging kernels that effi-
ciently cancel the contribution from the p-mode cavity. The more
evolved the star is, the smaller the envelope contribution to the
averaging kernel becomes. We show in Fig. 8 the core-averaging
kernels obtained for stars A and F, which are the least and most
evolved star of the sample, respectively. It is clear that these av-
eraging kernels are poor approximations to Dirac functions; but
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of the error bars of the observed splittings. We computed a cor-
recting factor to the errors that would bring the reduced χ2 to
1 and repeated the inversions performed in Sect. 6.3. We found
that a discontinuous rotation profile still reproduces the observed
splittings significantly better than a smooth profile for both stars.

For stars A, B, C, and E, no evidence for a discontinuous
rotation profile was found in the observations. However, this
does not mean that the profile is smooth because our simula-
tions showed that it is impossible to distinguish between the two
types of profiles. This raises the question of why stars D and
F are bette suited for detecting discontinuities in the rotation
profiles. Answering this question is beyond the scope of this
paper; but several possible explanations can be offered at this
point. First of all, stars D and F have the fastest core-rotation
(see Table 13). By performing statistical tests similar to those
presented in Appendix C for input profiles with increasing core
rotations, we indeed found that the probability of detecting a dis-
continuity increases with the core rotation. Yet, this does not ex-
plain why discontinuities cannot be detected for star E, which
has a core rotation that is similar to those of stars D and F. This
could come from the precision of the splitting estimates. Indeed,
we saw from Fig. C.3 that the splittings of several modes are cru-
cial for distinguishing between smooth and discontinuous pro-
files. The precision with which the splittings of these modes can
be determined from the observations is therefore decisive.

7. Discussion and conclusion

We selected a subsample of six subgiants or early red giants
observed with Kepler with the objective to obtain constraints
on the radial dependence of their rotation profile. For this pur-
pose, spectroscopic estimates of their surface parameters were
obtained, either from the literature or by performing ground-
based observations. The Kepler light curves of the six stars were
analyzed, enabling us to determine the frequencies and rota-
tional splittings of 12 to 18 mixed modes of degree l = 1 or 2
with a very high level of precision (uncertainties on the order
of 10 nHz). We then performed a seismic modeling of the six
targets and obtained stellar models that reproduce well both the
observed atmospheric parameters and the frequencies of the ob-
served modes. By using these models along with our estimates
of the rotational splittings, we performed inversions to probe the
rotation profiles of the selected targets.

By using the OLA (optimally localized average) method, we
were able to obtain estimates of the average rotation in the g-
mode cavity (which roughly corresponds to the innermost 2% of
the stellar radius) for the six stars of our sample (Sect. 6.2.1).
It is interesting that the mean core rotation rate appears to be
correlated with the evolutionary status. The two stars that are the
least evolved and were identified as subgiants on their way to the
RGB (stars A and B) have the slowest cores. To further illustrate
this point, we plot in Fig. 13 the estimated core rotation rates as a
function of the surface gravities that were obtained from seismic
global parameters in Sect. 2. There is a clear trend, which sug-
gests that the core spins up as the star evolves. At first glance,
this result seems at odds with the conclusions of Mosser et al.
(2012b), who reported that the core of red giant stars spins down
as they climb the RGB. However, the authors studied stars that
are more evolved than those in our sample. Figure 14 reproduces
Fig. 9 of Mosser et al. (2012b), where we added the core rotation
rates of the stars that were studied here (filled circles in the plot),
as well as the rotation rate of KIC 7341231 obtained by D12
(cross). Our results suggest that the core of subgiant stars spins
up until the base of the RGB and subsequently spins down due to

Fig. 13. Core (red symbols) and envelope (blue symbols) rotation rates
obtained with the OLA method (see Sects. 6.2.1 and 6.2.2) plotted as a
function of the surface gravity. The letter corresponding to each star is
specified. The dashed gray lines correspond to the range of surface ro-
tation rates predicted by van Saders & Pinsonneault (2013) for the stars
that lie in the range of parameters that they considered. The horizontal
and vertical lines indicate 1σ error-bars.

Fig. 14. Core rotation rate as a function of the stellar radius. The open
symbols correspond to the stars studied by Mosser et al. (2012b, circles:
RGB stars, squares: clump stars). The filled symbols indicate the stars
that were studied in this paper, and the cross corresponds to the young
giant KIC 7341231 studied by D12.

an efficient transport of AM from the core to the envelope whose
origin is still unknown. This suggests that during the subgiant
phase, the AM transport from the core to the envelope is not
efficient enough to counterbalance the core contraction, which
results in a spin-up of the core in this phase. This result, if con-
firmed, can be used to place constraints on the mechanisms of
AM transport that operate in this phase. The confirmation of this
result will require measuring the core rotation for more subgiant
stars, which is difficult since Kepler observed fewer of these tar-
gets4, and moreover, their modes are wider, which makes it more
difficult to estimate the rotational splittings.

We were also able to build averaging kernels that almost
erase the contribution from the core, and thus obtained estimates
of the rotation rate in the convective envelope for the stars of the
sample (see Sect. 6.2.2). We showed that except for star F, these
estimates are nearly insensitive to the core rotation. However,
if the radiative layers below the envelope spin much faster than

4 Subgiants are intrinsically less bright than red giants. Moreover,
short-cadence data are required to perform a seismic study of these
stars, which limits the number of targets.
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• Subagents and RGB stars in the early stage show that 
the core rotates faster than the envelope, but the 
difference is only a factor of 5~10 —- smaller than 
naively expected.

Running Summary (b)



Some thoughts
• Ultimate compact objects, neutron stars and pulsars, are rotating 

fast indeed, but more slowly than the case of local angular 
momentum conserved.

• Hence, angular momentum in a star must be lost substantially 
during stellar evolution.

• Mass-loss phase at RGB or AGB has been regarded as such a 
candidate.

• But, subgiants and RGB stars in the early stage were found to be 
rotating with smaller contrast between the core and the 
envelope.It is desirable to see evolution of stellar rotation.

• Surprisingly, two main-sequence A stars were found to be 
rotating uniformly and slowly.

• So, how about main-sequence solar-like stars?



4 O. Benomar et al.
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Figure 1. The figures show the rotational kernels (top) and their integral

over the radius (bottom) for the Sun, Kepler-25 and HAT-P-7 for l = 1
modes. Only modes with radial orders n = 10 and n = 25 are shown.

Integrals of kernels are almost identical to each other independently of the

star. Vertical dotted lines indicate bases of the outer convective zones.

The surface rotation frequencies f (2)
surf of the two CoRoT stars,

HD 49933 and HD 181420 are from Benomar et al. (2009) and Bar-

ban et al. (2009), respectively, who have detected the low-frequency

periodicity in the power spectrum. Note that alternative values were

derived by using a stellar spot modelling technique in Mosser et al.

(2009). These are in agreement with surface rate used in this study

(see Table A2). For Kepler stars, they are determined from rotation

periods Prot, which have been measured by Garcı́a et al. (2014)

based on the wavelet transform and on the analysis of the auto-

correlation function of the light curve3. When the comparison is

possible, their derived surface rotation is consistent with the rota-

tion from Karoff et al. (2013). Note that f (2)
surf cannot be evaluated

for HAT-P-7 and Kepler-25 because they do not show detectable

surface activity.

3.2 Internal rotation and stellar inclination

Asteroseismology of solar-like stars, in the present case, is based on

the photometry of the luminosity variation. Because of its stochas-

tic nature, each solar-like mode has a Lorentzian profile in the

3 Using KADACS and PDC-MAP data, see Garcı́a et al. (2011); Thomp-

son et al. (2013).
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Figure 2. Same as Fig. 1, but for l = 2 modes.

power spectrum (Harvey 1985). In that case, the stellar oscillations

can be expressed as a sum of Lorentzians over n, l and m,

P (ν) =
∑

n,l

l
∑

m=−l

Hn,l,m

1 + 4(ν − νn,l,m)2/Γ2
n,l,m

. (6)

Here, νn,l,m is given by equation (1) , while Hn,l,m and Γn,l,m

correspond to the mode height and width at half maximum, respec-

tively.

The turbulent convection, which is the origin of acoustic

modes, does not prefer any particular direction to others, so that

the rotationally split modes with the same l and n are expected to

have almost the same amplitudes. Due to a geometrical projection

effect (Ballot, Garcı́a & Lambert 2006; Gizon & Solanki 2003), in

disk-integrated photometry, the height of the split modes depend on

the stellar inclination angle i as Hn,l,m = El,m(i)Hn,l. Here Hn,l

is the intrinsic height for the mode, while El,m(i) is the visibility

of the m-components in the power spectrum,

El,m(i) =
(l − |m|)!
(l + |m|)!

[

P |m|
l (cos i)

]2

, (7)

with P |m|
l being the associated Legendre function. It is therefore

possible to determine i from El,m(i). Several authors have already

exploited that approach to measure the stellar inclination (e.g. Bal-

lot et al. 2008; Benomar et al. 2009; Appourchaux et al. 2012;

Chaplin et al. 2013; Benomar et al. 2014a; Lund et al. 2014).

In practice, the rotational splittings and the inclination angle

are determined, together with the Lorentzian parameters, by fitting
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Solar-like oscillations are only low degree high-order p-modes. 
They are sensitive not only to the envelope but to the deep interior.  

l = 1 l = 2

Benomar, O., Takata, M., Shibahashi, H., Ceillier, T, García, R. A. 2015, MNRAS, in press



��n,l,m = m(1 � Cn,l)
� R
0 Kn,l(r)�(r)dr

=: m(1 � Cn,l)fn,l

� Iradfrad + Iconvfconv

� Iradfrad + Iconvfsurf

�frad� = fsurf + �Irad��1(fseis � fsurf )

Separating contributions from the radiative core and the convective envelope,

Supposing the averaged rotation in the conv. env. is equal to the surface rotation rate,

Hence, from the seismically determined frequency splittings and the surface rotation rate, 



The surface rotation rate is estimated by
1. spectroscopically measured veqsini,
2. semi-periodic luminosity variation due to probably starspots
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Figure 4. The colour maps show the correlation between the stellar internal

rotation rates measured by the rotational splitting and the stellar inclina-

tion angles of three stars, on which superimposed are the surface rotation

rates derived from the stellar spot (horizontal black dash-dotted lines) and

the spectroscopic v sin i (curved dotted lines). The confidence interval are

shown in grey. In case (a), the surface and internal rotation rates as well as

the stellar inclination angle are all consistent with each other, which indi-

cates a near solid-body rotation. In cases (b) and (c), although the indicators

of the surface rotation are consistent with the seismically derived stellar in-

clination, they are in disagreement with the internal rotation rate.
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Figure 5. Comparison of the surface rotation rates estimated from (1) the

rotational broadening of spectroscopic absorption lines, f(1)
surf , and (2) the

lightcurve modulation due to spots, f(2)
surf . Colours show the mass of stars,

while the black dotted line shows a one-to-one relation. The indices for the

stars correspond to those in the first columns of Tables A1 and A2.
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Figure 6. Ratio of the surface rotation rates deduced from two different

kinds of observational data (one from the rotational broadening of spectral

lines and the other from the lightcurve modulation due to spots) as a func-

tion of the stellar inclination. The indices for the stars correspond to those

in the first columns of Tables A1 and A2.

not expected to be a major source of bias. However, macroturbu-

lence increases with the effective temperature (Valenti & Fischer

2005), and reaches 4–8 kms−1 in the case of F stars. As macro-

turbulence broadens the spectral lines, neglecting it overestimates

v sin i. This could explain that Fig. 5 shows a group of stars, such

as KIC 10162436 (index 13) and KIC 10454113 (index 15), that lie

below a one-to-one relation, but cannot explain the population of

stars with f (2)
surf ≫ f (1)

surf such as KIC 6508366 (index 5) and KIC

10355856 (index 14). However, we remark that these stars are seen

from latitude near the equator (60◦ < i < 90◦), where most stellar

spots are expected to emerge. Therefore, the important discrepancy
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the power spectrum of the light curve with the formula given by

equation (6). Therefore, the precision on the rotation is limited by

the correlation between the rotational splitting and of the stellar

inclination. Note that the splitting is assumed constant over the ob-

served range of modes in this analysis. As shown by Benomar et al.

(2014a), the correlation problem is particularly important in slow

rotators, because the 2l + 1 m-components of the same order n
and degree l are difficult to disentangle from each other. Contrary

to heat driven pulsators, stochastically driven pulsators have an im-

portant intrinsic noise of stellar origin that renders mode pulsations

hard to analyse and requires sophisticated statistical methods. Here,

we use a Markov Chain Monte Carlo method (see e.g. Benomar,

Appourchaux & Baudin 2009; Handberg & Campante 2011, for

applications in asteroseismology). This allows us to evaluate the

probability density function for the rotational splitting and stellar

inclination, as well as their correlations. Note that part of studied

stars have been analysed by Appourchaux et al. (2012) and Ap-

pourchaux et al. (2014), whose work focuses on mode frequencies,

widths and heights. Stars of the current work in common with these

studies are revisited here using the same data, but focusing on the

extraction of the rotation and the stellar inclination angle.

3.3 Stellar models

In order to evaluate Iconv and Irad in equation (3), it is necessary

to determine the thickness of the convective and radiative zones. In

addition, an estimate of the radius of each star is needed to eval-

uate the surface rotation rate based on the v sin i measurements.

All of these quantities are obtained by computing stellar models

that simultaneously match non-seismic observables (Teff , log g and

[Fe/H]) and seismic observables (mode frequencies). The used

constraints, their source and our results are summarised in Table

A1 in appendix A.

The best fitting models have been found using the ‘astero’

module of the Modules for Experiments in Stellar Astrophysics

(MESA) evolutionary code (Paxton et al. 2011, 2013). Stellar mod-

els have been calculated assuming a fixed mixing-length parame-

ter αMLT = 2.0. We have used OPAL opacities from Iglesias &

Rogers (1996) and the solar composition (for the mixture of heavy

elements) from Asplund et al. (2009). The initial hydrogen abun-

dance has been fixed to X0 = 0.7. No diffusion has been taken

into account. Nuclear reactions have been set to include standard

hydrogen and helium burning; the pp-chain and the CNO cycle in

addition to the triple alpha reaction, which is the default setup of

the MESA ‘astero’ module. We have utilised the NACRE compila-

tion of nuclear reaction rates (Angulo et al. 1999) with the updates

for 14N(p, γ)15O and 12C(α, γ)16O reactions (Kunz et al. 2002;

Formicola et al. 2004).

We have adopted the M. Schwarzschild treatment to define the

boundary between the convective and radiative zones. Note that we

do not take account of the convective overshooting, which we un-

derstand modifies the age of the stars, the position of the Base of

the Convective Zone (BCZ) and the stellar radius to some extent.

In order to assess the importance of this effect, we have computed

models of HD 49933 (index 21), HD 181420 (index 22), Kepler-

25 (index 19), and HAT-P-7 (index 20) including the overshoot.

These models have shown that by neglecting the overshoot, the

BCZ and the radius are changed by only a few per cent, at a level

that does not significantly influence the inferred internal rotation

rate ⟨frad⟩. However, it can affect the age (and hence the central

hydrogen abundance) by 25 per cent typically.

Eigenfrequencies have been calculated using ADIPLS
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Figure 3. Best fitting models of the 22 analysed stars in the HR diagram.

The numbers identify each of stars and correspond to those in the index

column of Tables A1 and A2. These models have been computed with the

MESA code so that they match both the non-seismic observables (Teff ,

log g and [Fe/H]) and the seismic observables (mode frequencies) simul-

taneously. Evolutionary tracks are for the solar metallicity.

(Christensen-Dalsgaard 2008), which assumes adiabaticity. We

have applied surface effect corrections to the frequencies, following

the method of Kjeldsen, Bedding & Christensen-Dalsgaard (2008).

The search for the best fitting model has involved a simplex min-

imisation approach (Nelder & Mead 1965) using the χ2 criteria,

where the mass M , metallicity [Fe/H] and age are the free parame-

ters of the fit.

4 RESULTS

The sensitivity of the average rotational splitting to the rotation rate

within the radiative zone is estimated to be ⟨Irad⟩ = 32–64 per

cent (the full list is given in Table A1 in appendix A). This range is

consistent with what is reported in Figs 1(b) and 2(b). Using the un-

certainty in the radius, we estimate the error in ⟨Irad⟩ to be approx-

imately 4 per cent. This is used to calculate the total uncertainty in

the average rotation rate of the radiative zone.

Fig. 3 shows the HR diagram of our samples (blue dots).

The numbers identify the stars and correspond to those in the in-

dex column of Tables A1 and A2. Luminosities of these mod-

els are determined so that the models fit both the non-seismic

and seismic observables, while the effective temperatures Teff are

those from spectroscopy. The coloured lines are evolutionary tracks

with the adopted physics and for the solar metallicity. Our sample

contains predominantly F stars — some of which have been ex-

tensively analysed for activity variations and magnetic cycles by

Mathur et al. (2014) —, with masses spanning from ≃ 1.0M⊙ to

≃ 1.6M⊙, an effective temperature 5990K < Teff < 6690K and

a metallicity similar to the Sun. Table A1 in appendix A provides

more detailed information about the best fitting models of each star.

4.1 Mode identification

A fundamental step in asteroseismology is to fix the indices n (ra-

dial order), l (degree) and m (azimuthal order) of each observed

c⃝ 0000 RAS, MNRAS 000, 000–000

Page 5 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Benomar, O., Takata, M., Shibahashi, H., Ceillier, T, García, R. A. 2015, MNRAS, in press



6 [Vol. ,

1050 1100 1150 1200
Frequency (µHz)

5

10

15

20

25

30

P
ow

er
 (

pp
m

2 /µ
H

z)

n=17,l=0 n=18,l=0 n=19,l=0

n=16,l=1 n=17,l=1 n=18,l=1

n=16,l=2 n=17,l=2 n=18,l=2

∆ν =59.2 µHz
800 1000 1200 1400 1600

 

 

 

 

Fig. 3. HAT-P-7. Power spectrum over three radial orders for modes with highest signal-to-noise ratio. The spectrum is shown
after a boxcar smooth over 0.08 µHz (grey) and 0.24 µHz (black). The best fit is the solid red line. The inset shows all the extracted
modes.
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Fig. 4. Kepler-25. Power spectrum over three radial orders for modes with highest signal-to-noise ratio. The spectrum is shown
after a boxcar smooth over 0.21 µHz (grey) and 0.83 µHz (black). The best fit is the solid red line. The inset shows all the extracted
modes.

The rotational splitting and the inclination angle are estimated 
in the form of  a probability distribution function (pdf).
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Figure 4. The colour maps show the correlation between the stellar internal

rotation rates measured by the rotational splitting and the stellar inclina-

tion angles of three stars, on which superimposed are the surface rotation

rates derived from the stellar spot (horizontal black dash-dotted lines) and

the spectroscopic v sin i (curved dotted lines). The confidence interval are

shown in grey. In case (a), the surface and internal rotation rates as well as

the stellar inclination angle are all consistent with each other, which indi-

cates a near solid-body rotation. In cases (b) and (c), although the indicators

of the surface rotation are consistent with the seismically derived stellar in-

clination, they are in disagreement with the internal rotation rate.

0 1 2 3 4 5
f(1)
surf (µHz)

0

1

2

3

4

5

f(2
)

su
rf (
µ

Hz
)

M = 1.07 1.31 1.56
CoRoT stars
Other Kepler stars

4 18 15
139

17 11

1
10

612
714

8
5 216

3 21

22

Figure 5. Comparison of the surface rotation rates estimated from (1) the

rotational broadening of spectroscopic absorption lines, f(1)
surf , and (2) the

lightcurve modulation due to spots, f(2)
surf . Colours show the mass of stars,

while the black dotted line shows a one-to-one relation. The indices for the

stars correspond to those in the first columns of Tables A1 and A2.
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Figure 6. Ratio of the surface rotation rates deduced from two different

kinds of observational data (one from the rotational broadening of spectral

lines and the other from the lightcurve modulation due to spots) as a func-

tion of the stellar inclination. The indices for the stars correspond to those

in the first columns of Tables A1 and A2.

not expected to be a major source of bias. However, macroturbu-

lence increases with the effective temperature (Valenti & Fischer

2005), and reaches 4–8 kms−1 in the case of F stars. As macro-

turbulence broadens the spectral lines, neglecting it overestimates

v sin i. This could explain that Fig. 5 shows a group of stars, such

as KIC 10162436 (index 13) and KIC 10454113 (index 15), that lie

below a one-to-one relation, but cannot explain the population of

stars with f (2)
surf ≫ f (1)

surf such as KIC 6508366 (index 5) and KIC

10355856 (index 14). However, we remark that these stars are seen

from latitude near the equator (60◦ < i < 90◦), where most stellar

spots are expected to emerge. Therefore, the important discrepancy
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The rotational splitting and the inclination angle are estimated 
in the form of  a probability distribution function (pdf).
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Figure 7. Rotational splittings versus surface rotation rates measured us-

ing the spectroscopic v sin i for sampled stars. The solar symbol near the

lower left corner indicates the Sun. The numbers attached to the stars corre-

spond to those in the first columns of Tables A1 and A2. The ratios of these

two quantities are mostly close to unity, implying that there is no signifi-

cant radial differential rotation in most cases. The dashed triple-dotted line

represents the expected positions of ZAMS models that assume local con-

servation of angular momentum in the radiative layers and constant rotation

rates in the convection zone.

between f (1)
surf and f (2)

surf could be due to the presence of multiple

spots.

A latitudinal differential rotation may also lead to discrepan-

cies between f (1)
surf and f (2)

surf . To assess this, we looked at the ratio

f (1)
surf/f

(2)
surf as a function of the stellar inclination i (Fig. 6) and

found no convincing trend with i that could explain discrepancies

described above. Further study that better accounts for the macro-

turbulence is required before drawing conclusion on the latitudinal

differential rotation. In any case, possible biases in v sin i are ex-

pected to be less important than those in Prot, and in the following,

we choose to f (1)
surf for the indicator of the surface rotation.

4.4 Comparison between internal and surface rotation

Fig. 7 compares f (1)
surf with the seismically obtained rotation rates

fseis. For reference, the Sun is also shown. The solar values of

the rotational splitting for l = 1 and l = 2 with 14 < n < 23
were taken from Toutain (2001). We obtained their average of

⟨δνnl⟩⊙ = 0.370 ± 0.007 uµHz. The surface velocity is calcu-

lated for the Sun-as-a-star, using the solar v⊙ sin i⊙ = 1.6 ± 0.3
km s−1 from Pavlenko et al. (2012) and adopting R⊙ = 6.96×105

km. The ecliptic plane is inclined from the solar equatorial plane by

approximately 7◦, which means that sin i⊙ can be different from 1

by 0.8 per cent at most. In Fig. 7, f (1)
surf and fseis are in good agree-

ment, which already suggests that there is not a significant radial

differential rotation in most cases. We thus confirm that nearly uni-

form rotation, which has been well established in the case of the

Sun, extends to the faster rotating main-sequence stars with similar

masses. However, we note that KIC 9139163 (index 10) and KIC

9206432 (index 11) depart significantly from the one-to-one rela-

tion, indicating that they seem to have faster-than-surface interior

rotation.

In order to discuss the implication of this result, evolution of

the rotation profiles of 1.2 and 1.5 M⊙ stellar models with the

solar composition has been calculated (Saio, private communica-

tion) from the (pre-main-sequence) Hayashi phase to the Zero-Age

Main-Sequence (ZAMS) stage, with the following assumptions: (1)

rotation rates are slow enough to have negligible effects on the

structure, which keeps spherical symmetry, (2) total angular mo-

mentum is conserved (no addition to and no removal from the sur-

face layers are considered), (3) the rotation profiles are functions

of only radius, (4) angular momentum is locally conserved in the

radiative zone and (5) it is redistributed instantaneously in the con-

vection zone to establish a constant rotation rate (a limiting case of

the efficient transport) with the total angular momentum of the zone

fixed. Note that point (5) leads to uniform initial rotation profiles,

because the models are fully convective in the Hayashi phase.

As the models evolve towards the ZAMS, the central mass

concentration gets higher, which results in spin-up of the cen-

tral part, whereas the rotation rate in the envelope augments more

weakly. Consequently, the ratio between the central and surface ro-

tation rates reaches about 2.5 (2.7) for the 1.2 (1.5) M⊙ model.

Note that this ratio is independent of the initial rotation rate itself.

By substituting the calculated rotation profiles of the ZAMS models

into equation (2), we have computed the average rotational split-

tings normalised by the surface rotation rate over all modes with

l = 1, 2 and n = 10–25. The resultant ratios are equal to 1.22 and

1.24 for the 1.2 and 1.5 M⊙ models, respectively, which suggest

that the ratio increases as a function of mass very mildly (at least in

the range that we discuss in the present analysis). To take account

of the smallest mass in our sample (∼ 1.0M⊙), a common ratio

of 1.2 is adopted for the ZAMS models between 1.0 and 1.6M⊙.

Fig. 7 shows a dashed triple-dotted line with this value of slope.

During the subsequent evolution of the models after ZAMS, the

central mass condensation continues, leading to an increase of the

ratio as the models age. The line thus indicates the lower limit of

the ratio that main-sequence stars in the mass range under consid-

eration would have, if angular momentum were locally conserved

in the radiative layers and fully redistributed in the convection zone

to realise a constant rotation rate. Therefore, the stars that are found

below the line in the figure provide clear evidence that angular mo-

mentum has been transported inside the radiative zone and/or be-

tween the radiative and convective zones of these stars. With a 1σ
confidence interval, the number of such stars is equal to 13 (those

with indices 2, 3, 4, 6, 8, 9, 12, 15, 17, 18, 19, 21 and 22). At

the 2σ level7, it still remains 10 stars (2, 3, 4, 6, 9, 15, 17, 18,

19, 22).8 Because the same physical process should operate in the

same physical conditions, we presume that angular momentum is

efficiently transported inside solar-like stars in general. Note that

the magnetic braking of the surface layers, which is supposed to be

effective for low-mass stars in our sample (Kraft 1967), is expected

to increase the ratio of the rotation rates between the interior and

the surface. The stars that have ∼ 1.3M⊙ or below, and found on

or above the line on the figure (those with indices 10, 13, 14 and

16) could reflect a significant effect of this mechanism.

7 The calculation has been done using the probability density functions and

thus account for the skewness of the distributions.
8 However, the values v sin i of stars with indices 4 and 18 are below

5 km s−1, so that the contribution of macroturbulence could possibly be

more significant than the estimated uncertainties.
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The difference between the surface rotation rate and 
the average rotation rate in the bulk of stars is small.
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Speculative conclusion
• Mass-loss phase at RGB or AGB has been suspected as a phase of 

dramatic change in stellar internal rotation.
• But, subgiants and RGB stars in the early stage were found to be 

rotating with smaller contrast between the core and the envelope.
• Surprisingly, two main-sequence A stars were found to be 

rotating uniformly and slowly.
• The main-sequence solar-like stars (including the Sun itself) 

were also found to be rotating nearly uniformly.
• An efficient process of angular momentum transport seems to 

operate during and/or before the main-sequence stage of stars?
• Internal rotation of stars is now a target of observational 

astronomy!



End of Lecture III-2


