The sounds of the stars

Asteroseismology

- New eyes to see the invisible stellar interiors
© Development of Helioseismology to Asteroseismology
- Various physical conditions/environment
- evolution stage, stratification, chemical compositions, rotation, magnetism, binarity, planets

Transit Light Curves

Q Almost continuous observations over 4 years

Q Observations from Space no atmospheric sintillation no day-night gaps
© Extremely high precision; $\Delta L / L \sim 10^{-6}$

continuous monitoring 150.000 stars over four: yeans?

Altair
AQUItA

Helioseismology

New eyes to see the invisible interior of the Sun

Robert B. Leighton

(Sep 10, 1919 - March 9, 1997)

Aiming to study turbulence ...

Discovery of Solar 5-minute Oscillation and
Supergranulation (1960)

Doppler velocity measurement

vin
 van N
 Nonn n wnin Nommonninn NAT

 y y珹为
 N隹四 M2

 Mno Mrosmonn win nin

Musman，S．\＆Rust，D．M．1970，Sol．Phys．，13， 261
mass conservation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho v)=0
$$

momentum conservation

$$
\rho\left(\frac{\partial}{\partial t}+v \cdot \nabla\right) v=\rho f-\nabla p-\rho \nabla \Phi
$$

energy conservation

$$
\rho T\left(\frac{\partial}{\partial t}+v \cdot \nabla\right) S=\rho \varepsilon-\nabla \cdot F
$$

$$
\begin{aligned}
& \rho=\rho_{0}(r)+\rho^{\prime}(r, t) \\
& v=v_{0}(r)+v^{\prime}(r, t) \\
& p=p_{0}(r)+p^{\prime}(r, t) \\
& r=r_{0}+\xi
\end{aligned}
$$

$$
\rho(r, t)=\rho_{0}(r)+\rho_{1}(r, t)+\rho_{2}(r, t)+\ldots
$$

Lagrangian displacement

$$
r\left(t, r_{0}\right)=r_{0}+\xi\left(t, r_{0}\right)
$$

Lagrangian velocity

$$
v=\mathrm{d} r / \mathrm{d} t
$$

where
$\mathrm{d} / \mathrm{d} t:=\partial / \partial t+\left(v_{0} \cdot \nabla\right)$
is Lagrangian derivative

Eulerian view: coordinates fixed

$$
f(r, t)=f_{0}(r)+f^{\prime}(r, t)
$$

Lagrangian view: mass element fixed

$$
\begin{aligned}
f\left(r_{0}, t\right) & =f_{0}\left(r_{0}\right)+\delta f\left(r_{0}, t\right) \\
& =f_{0}(r-\xi)+\delta f\left(r_{0}, t\right) \\
& =f_{0}(r)-(\xi \cdot \nabla) f_{0}(r)+\delta f\left(r_{0}, t\right) \\
r\left(t, r_{0}\right) & =r_{0}+\xi\left(t, r_{0}\right)
\end{aligned}
$$

Lagrangian perturbation: mass element fixed

Eulerian perturbation: coordinates fixed

$$
\therefore \delta f\left(r_{0}, t\right)=f^{\prime}(r, t)+(\xi \cdot \nabla) f_{0}(r)
$$

To first order,

$$
\delta f(r, t)=f^{\prime}(r, t)+(\xi \cdot \nabla) f_{0}(r)
$$

Time scales

$$
\text { Dynamical timescale : } \tau_{\mathrm{dyn}}=\left(G M / R^{3}\right)^{1 / 2}
$$

Thermal timescale : $\tau_{\mathrm{th}}=\int c_{\mathrm{v}} T \mathrm{~d} m / L$
$\tau_{\text {dyn }} \lll \tau_{\text {th }}$
Motion is almost adiabatic, that is, $\delta S=0$, or equivalently,

$$
\delta p / p=-\Gamma_{1} \delta \rho / \rho
$$

$$
\begin{aligned}
& \frac{\partial \rho^{\prime}}{\partial t}+\nabla \cdot\left(\rho_{0} v^{\prime}\right)=0 \\
& \rho_{0} \frac{\partial v}{\partial t}+\nabla p^{\prime}+\rho_{0} \nabla \Phi^{\prime}+\rho^{\prime} \nabla \Phi_{0}=0 \\
& \frac{\delta p}{p_{0}}=\gamma \frac{\delta \rho}{\rho_{0}} \\
& \frac{\partial p^{\prime}}{\partial t}-c_{0}^{2} \frac{\partial \rho^{\prime}}{\partial t}-\rho_{0} c_{0}^{2}\left(\frac{d \ln \rho_{0}}{d r}-\frac{1}{\Gamma_{1}} \frac{d \ln p_{0}}{d r}\right) v_{r}=0
\end{aligned}
$$

plane parallel isothermal atmosphere

$$
\begin{aligned}
& \rho \propto \exp \left(-z / H_{\rho}\right) \\
& c^{2}=\gamma p / \rho
\end{aligned}
$$

Set

$$
\xi, \frac{p^{\prime}}{\rho}, \frac{\rho^{\prime}}{\rho_{0}} \propto \exp \left(\frac{z}{2 H_{\rho}}\right) \exp (i k \cdot x+i \omega t)
$$

to derive a dispersion relation:

$$
\omega^{4}-\omega^{2}\left(c^{2} k^{2}+\omega_{\mathrm{ac}}^{2}\right)+N^{2} c^{2} k_{\mathrm{h}}^{2}=0
$$

Two types of modes

- Acoustic waves
- restoring force = gaseous pressure
- high frequency
- stellar envelope
- Gravity waves
- restoring force = buoyancy
- low frequency
- stellar deep core

Observational development

Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development : Fourier analysis

Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development : wider view

Deubner, F.-L. 1975, A\&A, 44, 371.

- Deubner's observation shows a set of ridges, which was in good agreement with the theoretical computation done by Ando \& Osaki (1975).
- However, agreement is not perfect. Observed ridges have higher frequencies.
- This means that the sound speed of the real Sun is higher than the model.
- Since $T_{\text {eff }}$ is fixed, this means that the temperature gradient is higher in the real Sun.
- This means the convection zone of the real Sun is deeper than expected.

Excitation mechanisms

- Self-excitation
-G. Thermal overstability:
opacity mechanism working in an ionization zone
- S. Stochastic excitation due to turbulence:
waves generated by turbulence resonate in the cavity of a whole star

C Tidally forced oscillation

Eigenmode: $\Upsilon_{l m}(\theta, \phi) \exp \left(i \omega_{l m n} t\right)$

Observational development : narrow-band filter

Libbrecht, K.G. 1988, ApJ, 334, 510.

Observational development : 2D disk image

Solar oscillation $=\sum a_{l m n} Y_{l m}(\theta, \phi) \exp \left(i \omega_{l m n} t\right)$

 spherical harmonic analysi$$
\longrightarrow(l, m)
$$

Fourier transform

$$
\longrightarrow\left(a_{l m n}, \omega_{l m n}\right)
$$

Observational development : high to middle range of l

Duvall, T.L., Jr., Harvey, J.W., Libbrecht, K.G., Popp, B.D. \& Pomerantz, M.A. 1988, ApJ, 324, 1158.

Total Solar Irradiance

Days (Epoch Jan 0, 1980)

$$
\begin{array}{lllllllllll}
75 & 77 & 79 & 81 & 83 & 858789 & 919395 \\
\text { Year }
\end{array}
$$

- TSI is lower this minimum than the previous two
- Unexpected change after a greatly disputed increase in the previous minimum
- Few mechanisms exist for magnetic changes in the basal solar luminosity

Observational development : Brightness variation

clear comb structure = evidence for low degree l high order n p-modes

Woodard, M. \& Hudson, H. 1983, Solar Phys., 82, 67.

Doppler measurement with integrated light

Palle, P.L., Perez, J.C., Regulo, C., Roca Cortes, C., Isaak, G.R., McLeod, C.P. \& van der Raay, H.B. 1986, A\&A,169, 313.

Doppler measurement with integrated light

clear comb structure = evidence for low degree l high order n p-modes

Echelle diagram $\quad v_{n l}=\Delta v(n+l / 2+\varepsilon)$

Gelly, B., Fossat, E., Grec, G. \& Schmider, X.-F. 1988, A\&A, 200, 207.

$$
v_{n l}=\Delta v(n+l / 2+\varepsilon)
$$

Gelly, B., Fossat, E., Grec, G. \& Schmider, X.-F. 1988, A\&A, 200, 207.

Observational development : high precision

Libbrecht, K.G., Woodard, M.F. \& Kaufman, J.M. 1990, ApJS, 74, 1129

Observational development : high precision

Observational development : ultra-high precision

SOHO/MDI

color code: amplitude

In order to global structures, we need to zoom out.

http://lambda.gsfc.nasa.gov/product/map/current/m images.cfm

Observed oscillation is a superposition of pmodes of the Sun.

Total number of the detected modes is $n \times l x m \sim 10 \times 10^{3} \times 10^{3}$
Quantitatively different from traditional study of pulsating stars

Forward problem approach:

- Make a series of equilibrium models with some parameters.
- Compute eigenvalues of each model.
- Find the best fitting model by comparing the computed eigenvalues and the observed ones.

$$
\begin{aligned}
& \frac{\partial^{2} \xi}{\partial t^{2}}=-\mathcal{L}(\xi) \\
& \omega^{2} \xi=\mathcal{L}\left(\xi ; c^{2}, \rho\right)
\end{aligned}
$$

- No guarantee, or no hope, for uniqueness

Inverse problem approach:

$$
\omega^{2} \xi=\mathcal{L}\left(\xi ; c^{2}, \rho\right)
$$

Integral equation for inverse problem:

$$
\begin{aligned}
\omega^{2} & =\int \xi^{*} \cdot \mathcal{L}(\xi) d m / \int|\xi|^{2} d m \\
\delta \omega^{2} & =\int \xi^{*} \cdot\left[\left(\frac{\partial \mathcal{L}}{\partial c^{2}}\right) \delta c^{2}+\left(\frac{\partial \mathcal{L}}{\partial \rho}\right) \delta \rho\right] d m
\end{aligned}
$$

- Assume a good model and compute its eigenvalues
- Take differences from the observed frequencies as the LHS
- Solve the above equations as algebraic equations

The differences are tiny, but meaningful!

Internal Rotation of the Sun

- Driving force of Magnetic Dynamos
- Driving force of Solar Activities
- Influence on Solar Structure \& Evolution

Influence of rotation

$$
\frac{\partial v}{\partial t}+(v \cdot \nabla) v+2 \Omega_{0} \times v+\Omega_{0} \times \Omega_{0} \times r=-\nabla \Phi-\frac{1}{\rho} \nabla p
$$

Linearized equation of motion:

$$
\begin{gathered}
\frac{\partial v^{\prime}}{\partial t}+\left(v_{0} \cdot \nabla\right) v^{\prime}+\left(v^{\prime} \cdot \nabla\right) v_{0}+2 \Omega_{0} \times v^{\prime}=-\nabla \Phi^{\prime}+\frac{\rho^{\prime}}{\rho^{2}} \nabla p_{0}-\frac{1}{\rho_{0}} \nabla p^{\prime} \\
\text { Coriolis force }
\end{gathered}
$$

Hence, the linearized equation of motion:

$$
\mathcal{L}(\xi)-\omega^{2} \xi+\omega \mathcal{M}(\xi)=0
$$

where

$$
\mathcal{M}(\xi):=2 i\left[\Omega_{0} \times \xi+\left(v_{0} \cdot \nabla\right) \xi\right]
$$

$$
\mathcal{L}(\xi)-\omega^{2} \xi+\omega \mathcal{M}(\xi)=0
$$

Treat the influence of M as perturbations;

$$
\begin{aligned}
& \rho=\rho^{(0)}+\rho^{(1)}+\cdots, \\
& \xi=\xi^{(0)}+\xi^{(1)}+\cdots, \\
& \omega=\omega^{(0)}+\omega^{(1)}+\cdots
\end{aligned}
$$

$\mathcal{L}^{(0)}\left(\xi^{(0)}\right)-\omega^{(0) 2} \xi^{(0)}=0$
$\mathcal{L}^{(0)}\left(\xi^{(1)}\right)+\mathcal{L}^{(1)}\left(\xi^{(0)}\right)-\omega^{(0) 2} \xi^{(1)}-2 \omega^{(0)} \omega^{(1)} \xi^{(0)}+\omega^{(0)} \mathcal{M}^{(0)}\left(\xi^{(0)}\right)=0$

In the case of slow rotation (Coriols force dominant):

$$
\begin{aligned}
& \boldsymbol{v}_{0}=\boldsymbol{\Omega} \times \boldsymbol{r}=(0,0, r \Omega \sin \theta) \\
& \boldsymbol{\Omega}=[\Omega(r, \theta) \cos \theta,-\Omega(r, \theta) \sin \theta, 0]
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \frac{\partial e_{r}}{\partial \phi}=\boldsymbol{e}_{\phi} \sin \theta, \\
& \frac{\partial e_{\theta}}{\partial \phi}=e_{\phi} \cos \theta, \\
& \frac{\partial e_{\phi}}{\partial \phi}=-e_{r} \sin \theta-e_{\theta} \cos \theta,
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{1}{2} \boldsymbol{\xi}_{m^{\prime \prime}}^{*} \cdot \mathcal{M}^{(0)}\left(\boldsymbol{\xi}_{m}\right)= & -m \Omega \boldsymbol{\xi}_{m^{\prime \prime}}^{*} \cdot \boldsymbol{\xi}_{m}-i\left(\Omega+\Omega_{0}\right) \xi_{m^{\prime \prime}, r}^{*} \xi_{m, \phi} \sin \theta \\
& -i\left(\Omega+\Omega_{0}\right) \xi_{m^{\prime \prime}, \theta}^{*} \xi_{m, \phi} \cos \theta \\
& +i\left(\Omega+\Omega_{0}\right) \xi_{m^{\prime \prime}, \phi}^{*}\left(\xi_{m, r} \sin \theta+\xi_{m, \theta} \cos \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\xi}^{(0)}= \sum_{m=-l}^{l} \alpha_{m} \boldsymbol{\xi}_{n l m} \\
& \boldsymbol{\xi}^{(1)}=\sum_{m^{\prime}} \sum_{n^{\prime} l^{\prime}}^{\prime} \beta_{n^{\prime} l^{\prime} m^{\prime}} \boldsymbol{\xi}_{n^{\prime} l^{\prime} m^{\prime}}+\sum_{l^{\prime} m^{\prime}} \gamma_{l^{\prime} m^{\prime}}(r) \boldsymbol{\eta}_{l^{\prime} m^{\prime}} \\
& \boldsymbol{\eta}_{l^{\prime} m^{\prime}}=\frac{1}{\left[l^{\prime}\left(l^{\prime}+1\right)\right]^{1 / 2}}\left(0, \frac{1}{\sin \theta} \frac{\partial}{\partial \phi},-\frac{\partial}{\partial \theta}\right) Y_{l^{\prime}}^{m^{\prime}}(\theta, \phi)
\end{aligned}
$$

Secular equation (Coriolis force dominant) :

$$
\sum_{m=-l}^{l}\left(\mathcal{M}_{m^{\prime \prime} m}-\omega^{(1)} \delta_{m^{\prime \prime} m}\right) \alpha_{m}=0
$$

where $\mathcal{M}_{m^{\prime \prime} m} \equiv \frac{1}{2 I_{n l}} \int_{0}^{M} \boldsymbol{\xi}_{n l m^{\prime \prime}}^{*} \cdot \mathcal{M}^{(0)}\left(\boldsymbol{\xi}_{n l m}\right) d M_{r}$,

$$
I_{n l} \equiv \int_{0}^{M}\left|\xi_{n l m}\right|^{2} d M_{r}
$$

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{M} \boldsymbol{\xi}_{n l m^{\prime \prime}}^{*} \cdot \mathcal{M}^{(0)}\left(\boldsymbol{\xi}_{n l m}\right) d M_{r}= & \delta_{m^{\prime \prime} m} m \times\left\{\Omega_{0} \int_{0}^{R} \rho(r) r^{2}\left(2 \xi_{r} \xi_{h}+\xi_{h}^{2}\right) d r\right. \\
& +\frac{2 l+1}{2} \frac{(l-|m|)!}{(l+|m|)!} \int_{\theta=0}^{\pi} \int_{r=0}^{R} \rho(r) r^{2} \Omega(r, \theta) \\
& \times\left[\left(-\xi_{r}^{2}+2 \xi_{r} \xi_{h}\right)\left(P_{l}^{m}\right)^{2}\right. \\
& \left.+\xi_{h}^{2}\left[2 P_{l}^{m} \frac{d P_{l}^{m}}{d \theta} \frac{\cos \theta}{\sin \theta}-\left(\frac{d P_{l}^{m}}{d \theta}\right)^{2}-\frac{m^{2}}{\sin ^{2} \theta}\left(P_{l}^{m}\right)^{2}\right]\right] \\
& d r \sin \theta d \theta\}
\end{aligned}
$$

$$
\int_{0}^{M}\left|\xi^{(0)}\right|^{2} d M_{r}=\int_{0}^{R} \rho(r) r^{2}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] d r
$$

Hence

$$
\mathcal{M}_{m^{\prime \prime} m}=\omega^{(1) \mathrm{rot}} \delta_{m^{\prime \prime} m}
$$

$\boldsymbol{\omega}_{m} \mathbf{(1) r o t}^{\mathbf{(1)}} m \times\left\{\Omega_{0} \int_{0}^{R} \rho(r) r^{2}\left(2 \xi_{r} \xi_{h}+\xi_{h}^{2}\right) d r\right.$

$$
\begin{aligned}
& +\frac{2 l+1}{2} \frac{(l-|m|)!}{(l+|m|)!} \int_{r=0}^{R} \rho(r) r^{2}\left[\int_{\theta=0}^{\pi}\left(P_{l}^{m}\right)^{2}\{\Omega(r, \theta) \sin \theta\right. \\
& \left.\left.\left.\times\left(2 \xi_{r} \xi_{h}-\xi_{r}^{2}+\xi_{h}^{2}[1-l(l+1)]\right)-\left(\frac{3}{2} \frac{\partial \Omega}{\partial \theta} \cos \theta+\frac{1}{2} \frac{\partial^{2} \Omega}{\partial \theta^{2}} \sin \theta\right) \xi_{h}^{2}\right\} d \theta\right] d r\right\} \\
& \times\left[\int_{0}^{R} \rho(r) r^{2}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] d r\right]^{-1}
\end{aligned}
$$

In the case of rigid rotation:

$$
\left.\omega_{m}^{(1) \text { rot }}\right|_{\text {inertial frame }}=-m\left(1-C_{n l}\right) \Omega
$$

$$
C_{n l}=\frac{\int_{0}^{R} \rho r^{2}\left[2 \xi_{r} \xi_{h}+\xi_{h}^{2}\right] d r}{\int_{0}^{R} \rho r^{2}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] d r}
$$

Running summary

(2 The $(2 l+1)$-fold frequency degeneracy is resolved by rotation.
. In a case of uniform slow rotation, the perturbation in frequency due to the Coriolis force is proportional to the rotational angular velocity and to the azimuthal order m.
(2) In the case of $\Omega=\Omega(r)$, the perturbation in frequency is again linearly proportional to m.

Solar surface latitudinal differential rotation.

Degeneracy lifts -> m-splitting

Frequency

Observational development : ultra-high precision

SOHO/MDI

color code: amplitude

spherical degree l

The inclination is determined by the averaged rotation rate, while the S-shape deviation from straight lines indicate latitudinal dependence of the internal rotation.

$\boldsymbol{\omega}_{m}{ }^{(\mathbf{1}) \mathbf{r o t}}=m \times\left\{\Omega_{0} \int_{0}^{R} \rho(r) r^{2}\left(2 \xi_{r} \xi_{h}+\xi_{h}^{2}\right) d r\right.$

$$
\begin{aligned}
& +\frac{2 l+1}{2} \frac{(l-|m|)!}{(l+|m|)!} \int_{r=0}^{R} \rho(r) r^{2}\left[\int_{\theta=0}^{\pi}\left(P_{l}^{m}\right)^{2}\{\Omega(r, \theta) \sin \theta\right. \\
& \left.\left.\left.\times\left(2 \xi_{r} \xi_{h}-\xi_{r}^{2}+\xi_{h}^{2}[1-l(l+1)]\right)-\left(\frac{3}{2} \frac{\partial \Omega}{\partial \theta} \cos \theta+\frac{1}{2} \frac{\partial^{2} \Omega}{\partial \theta^{2}} \sin \theta\right) \xi_{h}^{2}\right\} d \theta\right] d r\right\} \\
& \times\left[\int_{0}^{R} \rho(r) r^{2}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] d r\right]^{-1}
\end{aligned}
$$

A set of $\omega_{n l m}{ }^{(1) r o t}$ is regarded as integral equations to determine the 2D internal rotation profile.

Inversion for rotation

perturbation theory

Integral equation :

$$
\begin{gathered}
\delta \omega_{n, l, m}=m\left(1-C_{n, l}\right) \int_{0}^{R} K_{n, l}(r) \Omega(r) d r \\
C_{n, l}=\frac{\int_{0}^{R} \xi_{h}\left(2 \xi_{r}+\xi_{h}\right) r^{2} \rho d r}{\int_{0}^{R}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] r^{2} \rho d r}
\end{gathered}
$$

Kernel :

$$
K_{n, l}=\frac{\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}-2 \xi_{r} \xi_{h}-\xi_{h}^{2}\right] \rho r^{2}}{\int_{0}^{R}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}-2 \xi_{r} \xi_{h}-\xi_{h}^{2}\right] \rho r^{2} d r}
$$

Internal rotation rate

Contrary to the solar case, detectable pulsation modes are limited to low degree ($1=0-3$) modes.

Two types of modes

- Acoustic waves
- restoring force = gaseous pressure
- high frequency
- stellar envelope
- Gravity waves
- restoring force = buoyancy
- low frequency
- stellar deep core
perturbation theory

$$
\delta \omega_{n, l, m}=m\left(1-C_{n, l}\right) \int_{0}^{R} K_{n, l}(r) \Omega(r) d r
$$

$$
C_{n, l}=\frac{\int_{0}^{R} \xi_{h}\left(2 \xi_{r}+\xi_{h}\right) r^{2} \rho d r}{\int_{0}^{R}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] r^{2} \rho d r}
$$

$$
K_{n, l}=\frac{\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}-2 \xi_{r} \xi_{h}-\xi_{h}^{2}\right] \rho r^{2}}{\int_{0}^{R}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}-2 \xi_{r} \xi_{h}-\xi_{h}^{2}\right] \rho r^{2} d r}
$$

Sun as a Star

Solar-like stars: convection excites acoustic modes

$\Delta \nu \propto\left(M / R^{3}\right)^{1 / 2}=M^{1 / 2} R^{-3 / 2}$
$\nu_{\max } \propto g T_{\mathrm{eff}^{-1 / 2}} \propto M R^{-2} T_{\mathrm{eff}^{-1 / 2}}$
$\therefore R \propto v_{\max } \Delta v^{-2}$
$M \propto v_{\max }^{3} \Delta v^{-4}$

acoutic mode :

$$
\begin{aligned}
& v_{n l} \simeq \Delta v(n+l / 2+\varepsilon)-d_{n l} \\
& \Delta v=\left[2 \int c^{-1} d r\right]^{-1} \\
& d_{n l}: \text { sensitive to the core }
\end{aligned}
$$

frequency $\sim(\text { sound travel time from the center to the surface) })^{-1}$
$\sim\left(G M / R^{3}\right)^{1 / 2}$
sound wave: fast in the deep interior, less sensitive to the core
refraction due to the temperature gradient induces the sensibility to the core, evolution stage

large spacing Δv

Excitation mechanisms

- Self-excitation
-G. Thermal overstability:
opacity mechanism working in an ionization zone
- S. Stochastic excitation due to turbulence: waves generated by turbulence resonate in the cavity of a whole star

valve mechanism

by analogy to car engines

recent progress

- Stellar rotation leads to frequency splittings.
- Acoustic modes tell us rotation of stellar outer envelope.
- Gravity modes tell us rotation of stellar deep core.
- To our surprise, core-to-envelope spin rate ratio is small.
- This implies the presence of very efficient angular momentum transfer / mixing.
- Internal rotation of stars became observational science.

At first sight it would seem that the deep interior of the sun and stars is less accessible to scientific investi gation than any other region of the universe. Our telescopes may probe farther and farther into the depths of space; but how can we ever obtain certain knowledge of that which is hidden behind substantial barriers? What appliance can pierce through the outer layers of a star and test the conditions
${ }^{80}$ within?

IV. Asteroseismic New Insights to Stellar Rotation

Stellar rotation is measured from spectroscopic line broadening.

F. Royer 2009, Lecture Notes in Phys., 765, 207

Some thoughts

- Helioseismology opened a new way to see the invisible internal rotation of the Sun, which had had no hope to see it.
- Surprisingly, the radiative core of the Sun was found to be rotating uniformly and slowly.
- Ultimate compact objects, neutron stars and pulsars, are rotating fast indeed, but more slowly than the case of local angular momentum conserved.
- Hence, angular momentum in a star must be lost substantially during stellar evolution.
- Mass-loss phase at RGB or AGB has been regarded as such a candidate.
- But, the Sun, as a main sequence star, seems to have already lost its angular momentum.
- It is desirable to see evolution of stellar rotation.

Remarks: INS = Isolated Neutron Stars, RRAT = Rotating Radio Transients, CCO = Compact Central Objects from http://inspirehep.net/record/1217663/plots

Some thoughts

- In the case of distant stars, the photometrically detectable modes are limited only to very low degree modes, such as $l=0 \sim 2$ or 3 .
- Hard to see the S-shape form of Δv as a function of m / l.
- Visibility of the rotational splitting is highly dependent on the inclination angle to the line-of-sight.
- In the case of solar-like stars, m-modes are expected to be equally excited.
- In the case of solar-like stars, the rotational splitting is likely to be small (because of slow rotation), while turbulence makes the spectroscopic lines broad.

Doppler measurement with integrated light

a clear comb structure = evidence for low degree l high order n p-modes

The inclination is determined by the averaged rotation rate, while the S-shape deviation from straight lines indicate latitudinal dependence of the internal rotation.

Visibility of rotational multiplets is highly sensitive to the stellar inclination.

Benomar, O., Masuda, K., Shibahashi, H., Suto, Y. 2014, PASJ, 66, 94

Credit: C. S. Jeffery

Some thoughts

- In the case of early-type stars, the amplitudes of m-components may be dependent on the excitation mechanism, so may be different each other.
- In the case of early-type stars, there is a possibility of hybrid stars pulsating with both p - and g-modes. They may provide information from the core to the envelope.
- Let us look for good examples among the Kepler stars.

An Example of Hybrid Stars KIC11145123

$$
\begin{gathered}
T_{\text {eff }}=8050+/-200 \mathrm{~K} \\
\log g(\operatorname{cgs})=4.0+/-0.2
\end{gathered}
$$

a hybrid δ Sct $/ \gamma$ Dor star

KIC11145123

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102

KIC11145123

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102

KIC11145123
g modes

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102

KIC11145123
p modes

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102

Inversion for rotation

perturbation theory

Integral equation :

$$
\begin{gathered}
\delta \omega_{n, l, m}=m\left(1-C_{n, l}\right) \int_{0}^{R} K_{n, l}(r) \Omega(r) d r \\
C_{n, l}=\frac{\int_{0}^{R} \xi_{h}\left(2 \xi_{r}+\xi_{h}\right) r^{2} \rho d r}{\int_{0}^{R}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] r^{2} \rho d r}
\end{gathered}
$$

Kernel :

$$
K_{n, l}=\frac{\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}-2 \xi_{r} \xi_{h}-\xi_{h}^{2}\right] \rho r^{2}}{\int_{0}^{R}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}-2 \xi_{r} \xi_{h}-\xi_{h}^{2}\right] \rho r^{2} d r}
$$

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102

The Ledoux constant :

$$
C_{n, l}=\frac{\int_{0}^{R} \xi_{h}\left(2 \xi_{r}+\xi_{h}\right) r^{2} \rho d r}{\int_{0}^{R}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] r^{2} \rho d r}
$$

High-order p-modes :

$$
\left|\xi_{\mathrm{h}}\right| \ll\left|\xi_{\mathrm{r}}\right|
$$

then $C_{n l} \longrightarrow 0$
High-order g-modes :

$$
\left|\xi_{\mathrm{r}}\right| \ll\left|\xi_{\mathrm{h}}\right|
$$

then $C_{n l} \longrightarrow 1 / l(l+1)$

$$
\begin{array}{rr}
C_{n l}=1 / 2 & \text { for } l=1 \\
1 / 6 & \text { for } l=2
\end{array}
$$

The observed splitting of g -modes is $\sim 0.005 \mathrm{~d}^{-1}$, while the observed splitting is $\sim 0.01 \mathrm{~d}^{-1}$.

So, $i t$ is concluded that the star is almost uniformly rotating with $P_{\text {rot }} \sim \mathbf{1 0 0} \mathbf{d}$. This conclusion is model independent.

Two-zone model of internal rotation

Kurtz, D. W., Saio, H., Takata, M., Shibahashi, H., Murphy, S. J., Sekii, T. 2014, MNRAS, 444, 102
gravity mode: $P_{n l}=[l(l+1)]^{1 / 2} P_{0}(n+l / 2+\varepsilon)$, where $P_{0}:=\int_{c}{ }^{\mathrm{R}} N / r \mathrm{~d} r$

The period separation is sensitive to the chemically inhomogeneous zone.

Evolutionary stage of the star

Useful information :

- Period separation of g-modes -- sensitive to the μ-zone
- Frequencies of singlet p-modes

Another similar hybrid δ Sct / γ Dor star : KIC 9244992

Saio, H., Kurtz, D.W., Takata, M., Shibahashi, H., Murphy, S.J., Sekii, T., Bedding, T.R. 2015, MNRAS, 447, 3264

The impacts

- Internal rotation of stars became an observational astronomy.
- Two examples of the main-sequence stars were found to be almost uniformly rotating from core to surface, model independently.

Break

Asteroseismology of Giant Stars
gravity mode: $P_{n l}=[l(l+1)]^{1 / 2} P_{0}(n+l / 2+\varepsilon)$, where $P_{0}:=\int_{c}{ }^{\mathrm{R}} N / r \mathrm{~d} r$

The period separation is sensitive to the chemically inhomogeneous zone.

Dramatic development of Asteroseismology of Red Giants
gravity wave : buoyancy as restoring force
buoyancy: stratification of light element above heavy element layer
practically, gravito-acoustic wave

Christensen-Dalsgaard, J. 2012, ASPC, 462, 505

Red giants: propagation diagram

mixed mode :
$l=1$ modes are sensitive both to stellar core and envelope and detectable
dual character :
acoustic wave in envelope, while gravity wave in core
probe for stellar core

Montalban J. et al. 2010, ApJ 721 L182
Bedding T.R. et al. 2011, Nature 471608
Beck P. et al. 2011, Nature doi:10.1038/nature10612

$$
\begin{aligned}
& v_{n l} \simeq \Delta v(n+l / 2+\varepsilon)-d_{n l} \\
& \Delta v=\left[2 \int c^{-1} d r\right]^{-1}
\end{aligned}
$$

Montalbán, J., Miglio, A., Noels, A., Dupret, M.-A., Scuflaire, R., \& Ventura, P. 2013, ApJ, 766, 118

Stello, D., Huber, D., Bedding, T. R., et al. 2013, in ASP Conf. Ser., 479, 167

Stello, D., Huber, D., Bedding, T. R., et al. 2013, in ASP Conf. Ser., 479, 167

Period spacing as a function of frequency spacing

Mosser, B., Benomar, O., Belkacem, K., et al. 2014, A\&A, 572, L5

Running Summary (a)

- Dipole ($l=1$) mixed modes are very helpful to extract information of the deep interior of red giants.
- RGB and RC are distinguishable by asteroseismology, though they are overlapped each other on the HR diagram.

Delheuves, S., Doğan, G., Goupil, M.J., et al. 2014, A\&A, 564, A27

KIC12508433

$$
\zeta:=\frac{K E(\mathrm{~g} \text { mode cavity })}{K E(\text { total })}
$$

Running Summary (b)

- Subagents and RGB stars in the early stage show that the core rotates faster than the envelope, but the difference is only a factor of $5 \sim 10$ - smaller than naively expected.

Some thoughts

- Ultimate compact objects, neutron stars and pulsars, are rotating fast indeed, but more slowly than the case of local angular momentum conserved.
- Hence, angular momentum in a star must be lost substantially during stellar evolution.
- Mass-loss phase at RGB or AGB has been regarded as such a candidate.
- But, subgiants and RGB stars in the early stage were found to be rotating with smaller contrast between the core and the envelope.It is desirable to see evolution of stellar rotation.
- Surprisingly, two main-sequence A stars were found to be rotating uniformly and slowly.
- So, how about main-sequence solar-like stars?

Solar-like oscillations are only low degree high-order p-modes. They are sensitive not only to the envelope but to the deep interior.

Benomar, O., Takata, M., Shibahashi, H., Ceillier, T, García, R. A. 2015, MNRAS, in press

$$
\begin{aligned}
\delta \omega_{n, l, m} & =m\left(1-C_{n, l}\right) \int_{0}^{R} K_{n, l}(r) \Omega(r) d r \\
& =: m\left(1-C_{n, l}\right) f_{n, l}
\end{aligned}
$$

Separating contributions from the radiative core and the convective envelope,

$$
\simeq I_{\mathrm{rad}} f_{\mathrm{rad}}+I_{\mathrm{conv}} f_{\mathrm{conv}}
$$

Supposing the averaged rotation in the conv. env. is equal to the surface rotation rate,

$$
\simeq I_{\mathrm{rad}} f_{\mathrm{rad}}+I_{\mathrm{conv}} f_{\mathrm{surf}}
$$

Hence, from the seismically determined frequency splittings and the surface rotation rate,

$$
\left\langle f_{\text {rad }}\right\rangle=f_{\text {surf }}+\left\langle I_{\text {rad }}\right\rangle^{-1}\left(f_{\text {seis }}-f_{\text {surf }}\right)
$$

The surface rotation rate is estimated by

1. spectroscopically measured $v_{\text {eq }} \sin i$,
2. semi-periodic luminosity variation due to probably starspots

Benomar, O., Takata, M., Shibahashi, H., Ceillier, T, García, R. A. 2015, MNRAS, in press

The rotational splitting and the inclination angle are estimated in the form of a probability distribution function (pdf).

The rotational splitting and the inclination angle are estimated in the form of a probability distribution function (pdf).

(a) KIC 7206837

Benomar, O., Takata, M., Shibahashi, H., Ceillier, T, García, R. A. 2015, MNRAS, in press

The difference between the surface rotation rate and the average rotation rate in the bulk of stars is small.

Benomar, O., Takata, M., Shibahashi, H., Ceillier, T, García, R. A. 2015, MNRAS, in press

Speculative conclusion

- Mass-loss phase at RGB or AGB has been suspected as a phase of dramatic change in stellar internal rotation.
- But, subgiants and RGB stars in the early stage were found to be rotating with smaller contrast between the core and the envelope.
- Surprisingly, two main-sequence A stars were found to be rotating uniformly and slowly.
- The main-sequence solar-like stars (including the Sun itself) were also found to be rotating nearly uniformly.
- An efficient process of angular momentum transport seems to operate during and/or before the main-sequence stage of stars?
- Internal rotation of stars is now a target of observational astronomy!

End of Lecture III-2

