Helioseismology

New eyes to see
the invisible interior of the Sun

Robert B. Leighton

(Sep 10, 1919 - March 9, 1997)

Doppler velocity measurement

 N

 N凪

为

 vavimannonn wis N N
 Minutes
 Monsman Manminn Mnomminnirnmanisws Noms Mriominnonsmons
 whimenoms nownomin
 marraminas anownmens
隹为隹

Musman，S．\＆Rust，D．M．1970，Sol．Phys．，13， 261

mass conservation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho v)=0
$$

momentum conservation

$$
\rho\left(\frac{\partial}{\partial t}+v \cdot \nabla\right) v=\rho f-\nabla p-\rho \nabla \Phi
$$

energy conservation

$$
\rho T\left(\frac{\partial}{\partial t}+v \cdot \nabla\right) S=\rho \varepsilon-\nabla \cdot F
$$

$$
\begin{aligned}
& \rho=\rho_{0}(r)+\rho^{\prime}(r, t) \\
& v=v_{0}(r)+v^{\prime}(r, t) \\
& p=p_{0}(r)+p^{\prime}(r, t) \\
& r=r_{0}+\xi
\end{aligned}
$$

$$
\rho(r, t)=\rho_{0}(r)+\rho_{1}(r, t)+\rho_{2}(r, t)+\ldots
$$

Lagrangian displacement

$$
r\left(t, r_{0}\right)=r_{0}+\xi\left(t, r_{0}\right)
$$

Lagrangian velocity

$$
v=\mathrm{d} r / \mathrm{d} t
$$

where
$\mathrm{d} / \mathrm{d} t:=\partial / \partial t+\left(\partial_{0} \cdot \nabla\right)$
is Lagrangian derivative

Eulerian view: coordinates fixed

$$
f(r, t)=f_{0}(r)+f^{\prime}(r, t)
$$

Lagrangian view: mass element fixed

$$
\begin{aligned}
f\left(r_{0}, t\right) & =f_{0}\left(r_{0}\right)+\delta f\left(r_{0}, t\right) \\
& =f_{0}(r-\xi)+\delta f\left(r_{0}, t\right) \\
& =f_{0}(r)-(\xi \cdot \nabla) f_{0}(r)+\delta f\left(r_{0}, t\right) \\
r\left(t, r_{0}\right) & =r_{0}+\xi\left(t, r_{0}\right)
\end{aligned}
$$

 light-blue line shows the unperturbed flow, both for the same fluid element of mass dm.

Lagrangian perturbation: mass element fixed Eulerian perturbation: coordinates fixed

$$
\therefore \delta f\left(r_{0}, t\right)=f^{\prime}(r, t)+(\xi \cdot \nabla) f_{0}(r)
$$

To first order,

$$
\delta f(r, t)=f^{\prime}(r, t)+(\xi \cdot \nabla) f_{0}(r)
$$

Time scales

Dynamical timescale : $\tau_{\mathrm{dyn}}=\left(G M / R^{3}\right)^{1 / 2}$

$$
\text { Thermal timescale }: \tau_{\mathrm{th}}=\int c_{\mathrm{v}} T \mathrm{~d} m / L
$$

$\tau_{\text {dyn }} \lll \tau_{\text {th }}$

> Motion is almost adiabatic, that is, $\delta S=0$, or equivalently,

$$
\delta \rho / p=-\Gamma_{1} \delta \rho / \rho
$$

$$
\begin{aligned}
& \frac{\partial \rho^{\prime}}{\partial t}+\nabla \cdot\left(\rho_{0} v^{\prime}\right)=0 \\
& \rho_{0} \frac{\partial v}{\partial t}+\nabla p^{\prime}+\rho_{0} \nabla \Phi^{\prime}+\rho^{\prime} \nabla \Phi_{0}=0 \\
& \frac{\delta p}{p_{0}}=\gamma \frac{\delta \rho}{\rho_{0}} \\
& \frac{\partial p^{\prime}}{\partial t}-c_{0}^{2} \frac{\partial \rho^{\prime}}{\partial t}-\rho_{0} c_{0}^{2}\left(\frac{d \ln \rho_{0}}{d r}-\frac{1}{\Gamma_{1}} \frac{d \ln p_{0}}{d r}\right) v_{r}=0
\end{aligned}
$$

plane parallel isothermal atmosphere

$$
\begin{aligned}
& \rho \propto \exp \left(-z / H_{\rho}\right) \\
& c^{2}=\gamma p / \rho
\end{aligned}
$$

Set

$$
\boldsymbol{\xi}, \frac{p^{\prime}}{\rho}, \frac{\rho^{\prime}}{\rho_{0}} \propto \exp \left(\frac{z}{2 H_{\rho}}\right) \exp (i \boldsymbol{k} \cdot \boldsymbol{x}+i \omega t)
$$

to derive a dispersion relation:

$$
\omega^{4}-\omega^{2}\left(c^{2} k^{2}+\omega_{\mathrm{ac}}^{2}\right)+N^{2} c^{2} k_{\mathrm{h}}^{2}=0
$$

Two types of modes

- Acoustic waves
- restoring force $=$ gaseous pressure
- high frequency
- stellar envelope
- Gravity waves
- restoring force $=$ buoyancy
- low frequency
- stellar deep core

Observational development

Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development : Fourier analysis

Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development : wider view

Deubner, F.-L. 1975, A\&A, 44, 371.

- Deubner's observation shows a set of ridges, which was in good agreement with the theoretical computation done by Ando \& Osaki (1975).
- However, agreement is not perfect. Observed ridges have higher frequencies.
- This means that the sound speed of the real Sun is higher than the model.
- Since $T_{\text {eff }}$ is fixed, this means that the temperature gradient is higher in the real Sun.
- This means the convection zone of the real Sun is deeper than expected.

Excitation mechanisms

- Self-excitation
-f. Thermal overstability:
opacity mechanism working in an ionization zone
- S. Stochastic excitation due to turbulence:
waves generated by turbulence resonate in the cavity of a whole star

C Tidally forced oscillation

Eigenmode: $Y_{l m}(\theta, \phi) \exp \left(i \omega_{l m n} t\right)$

Observational development : narrow-band filter

Libbrecht, K.G. 1988, ApJ, 334, 510.

Observational development : 2D disk image

Solar oscillation $=\sum a_{l m n} Y_{l m}(\theta, \phi) \exp \left(i \omega_{l m n} t\right)$

spherical harmonic analysi

$$
\longrightarrow(l, m)
$$

Fourier transform
$\longrightarrow\left(a_{l m n}, \omega_{l m n}\right)$

Observational development : high to middle range of l

Duvall, T.L., Jr., Harvey, J.W., Libbrecht, K.G., Popp, B.D. \& Pomerantz, M.A. 1988, ApJ, 324, 1158.

Total Solar Irradiance

Days (Epoch Jan 0, 1980)

$$
\begin{aligned}
& 7577798183858789919395979901030507 \\
& \text { Year }
\end{aligned}
$$

- TSI is lower this minimum than the previous two
- Unexpected change after a greatly disputed increase in the previous minimum
- Few mechanisms exist for magnetic changes in the basal solar luminosity

Observational development : Brightness variation

clear comb structure $=$ evidence for
low degree l high order \boldsymbol{n} p-modes

Woodard, M. \& Hudson, H. 1983, Solar Phys., 82, 67.

Doppler measurement with integrated light

Palle, P.L., Perez, J.C., Regulo, C., Roca Cortes, C., Isaak, G.R., McLeod, C.P. \& van der Raay, H.B. 1986, A\&A,169, 313.

Doppler measurement with integrated light

clear comb structure = evidence for low degree l high order n p-modes

Echelle diagram $\quad \boldsymbol{v}_{n l}=\Delta \boldsymbol{v}(\boldsymbol{n}+l / 2+\varepsilon)$

Gelly, B., Fossat, E., Grec, G. \& Schmider, X.-F. 1988, A\&A, 200, 207.

Echelle diagram $\quad v_{n l}=\Delta v(n+l / 2+\varepsilon)$

Gelly, B., Fossat, E., Grec, G. \& Schmider, X.-F. 1988, A\&A, 200, 207.

Observational development : high precision

Libbrecht, K.G., Woodard, M.F. \& Kaufman, J.M. 1990, ApJS, 74, 1129

Observational development : high precision

Observational development : ultra-high precision

SOHO/MDI

color code:

 amplitude
In order to global structures, we need to zoom out.

http://lambda.gsfc.nasa.gov/product/map/current/m images.cfm

Observed oscillation is a superposition of pmodes of the Sun.

Total number of the detected modes is $n x l x m \sim 10 \times 10^{3} \times 10^{3}$

Quantitatively different from traditional study of pulsating stars

Forward problem approach:

- Make a series of equilibrium models with some parameters.
- Compute eigenvalues of each model.
- Find the best fitting model by comparing the computed eigenvalues and the observed ones.

$$
\begin{aligned}
& \frac{\partial^{2} \xi}{\partial t^{2}}=-\mathcal{L}(\xi) \\
& \omega^{2} \xi=\mathcal{L}\left(\xi ; c^{2}, \rho\right)
\end{aligned}
$$

- No guarantee, or no hope, for uniqueness

Inverse problem approach:

$$
\omega^{2} \xi=\mathcal{L}\left(\xi ; c^{2}, \rho\right)
$$

Integral equation for inverse problem:

$$
\begin{aligned}
\omega^{2} & =\int \xi^{*} \cdot \mathcal{L}(\xi) d m / \int|\xi|^{2} d m \\
\delta \omega^{2} & =\int \xi^{*} \cdot\left[\left(\frac{\partial \mathcal{L}}{\partial c^{2}}\right) \delta c^{2}+\left(\frac{\partial \mathcal{L}}{\partial \rho}\right) \delta \rho\right] d m
\end{aligned}
$$

- Assume a good model and compute its eigenvalues
- Take differences from the observed frequencies as the LHS
- Solve the above equations as algebraic equations

Sound speed profile inside the Sun

The differences are tiny, but meaningful!

Internal Rotation of the Sun

- Driving force of Magnetic Dynamos
- Driving force of Solar Activities
- Influence on Solar Structure \& Evolution

Influence of rotation

$$
\frac{\partial v}{\partial t}+(v \cdot \nabla) v+2 \Omega_{0} \times v+\Omega_{0} \times \Omega_{0} \times r=-\nabla \Phi-\frac{1}{\rho} \nabla p
$$

Linearized equation of motion:

$$
\frac{\partial v^{\prime}}{\partial t}+\left(v_{0} \cdot \nabla\right) v^{\prime}+\left(v^{\prime} \cdot \nabla\right) v_{0}+2 \Omega_{0} \times v^{\prime}=-\nabla \Phi^{\prime}+\frac{\rho^{\prime}}{\rho^{2}} \nabla p_{0}-\frac{1}{\rho_{0}} \nabla p^{\prime}
$$ Coriolis force

Hence, the linearized equation of motion:

$$
\mathcal{L}(\xi)-\omega^{2} \xi+\omega \mathcal{M}(\xi)=0
$$

where

$$
\mathcal{M}(\xi):=2 i\left[\Omega_{0} \times \xi+\left(v_{0} \cdot \nabla\right) \xi\right]
$$

$$
\mathcal{L}(\xi)-\omega^{2} \xi+\omega \mathcal{M}(\xi)=0
$$

Treat the influence of M as perturbations;

$$
\begin{aligned}
& \rho=\rho^{(0)}+\rho^{(1)}+\cdots, \\
& \xi=\xi^{(0)}+\xi^{(1)}+\cdots, \\
& \omega=\omega^{(0)}+\omega^{(1)}+\cdots
\end{aligned}
$$

$\mathcal{L}^{(0)}\left(\xi^{(0)}\right)-\omega^{(0) 2} \xi^{(0)}=0$
$\mathcal{L}^{(0)}\left(\xi^{(1)}\right)+\mathcal{L}^{(1)}\left(\xi^{(0)}\right)-\omega^{(0) 2} \xi^{(1)}-2 \omega^{(0)} \omega^{(1)} \xi^{(0)}+\omega^{(0)} \mathcal{M}^{(0)}\left(\xi^{(0)}\right)=0$

In the case of slow rotation (Coriols force dominant):

$$
\begin{aligned}
& \boldsymbol{v}_{0}=\boldsymbol{\Omega} \times \boldsymbol{r}=(0,0, r \Omega \sin \theta) \\
& \boldsymbol{\Omega}=[\Omega(r, \theta) \cos \theta,-\Omega(r, \theta) \sin \theta, 0]
\end{aligned}
$$

Note that

$$
\begin{aligned}
\frac{\partial e_{r}}{\partial \phi} & =e_{\phi} \sin \theta \\
\frac{\partial e_{\theta}}{\partial \phi} & =e_{\phi} \cos \theta \\
\frac{\partial e_{\phi}}{\partial \phi} & =-e_{r} \sin \theta-e_{\theta} \cos \theta
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{1}{2} \boldsymbol{\xi}_{m^{\prime \prime}}^{*} \cdot \mathcal{M}^{(0)}\left(\boldsymbol{\xi}_{m}\right)= & -m \Omega \boldsymbol{\xi}_{m^{\prime \prime}}^{*} \cdot \boldsymbol{\xi}_{m}-i\left(\Omega+\Omega_{0}\right) \xi_{m^{\prime \prime}, r}^{*} \xi_{m, \phi} \sin \theta \\
& -i\left(\Omega+\Omega_{0}\right) \xi_{m^{\prime \prime}, \theta}^{*} \xi_{m, \phi} \cos \theta \\
& +i\left(\Omega+\Omega_{0}\right) \xi_{m^{\prime \prime}, \phi}^{*}\left(\xi_{m, r} \sin \theta+\xi_{m, \theta} \cos \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{\xi}^{(0)}= & \sum_{m=-l}^{l} \alpha_{m} \boldsymbol{\xi}_{n l m} \\
\boldsymbol{\xi}^{(1)}= & \sum_{m^{\prime}}^{m=-} \sum_{n^{\prime} l^{\prime}}^{\prime} \beta_{n^{\prime} l^{\prime} m^{\prime}} \boldsymbol{\xi}_{n^{\prime} l^{\prime} m^{\prime}}+\sum_{l^{\prime} m^{\prime}} \gamma_{l^{\prime} m^{\prime}}(r) \boldsymbol{\eta}_{l^{\prime} m^{\prime}} \\
& \boldsymbol{\eta}_{l^{\prime} m^{\prime}} \equiv \frac{1}{\left[l^{\prime}\left(l^{\prime}+1\right)\right]^{1 / 2}}\left(0, \frac{1}{\sin \theta} \frac{\partial}{\partial \phi},-\frac{\partial}{\partial \theta}\right) Y_{l^{\prime}}^{m^{\prime}}(\theta, \phi)
\end{aligned}
$$

Secular equation (Coriolis force dominant) :

$$
\sum_{m=-l}^{l}\left(\mathcal{M}_{m^{\prime \prime} m}-\omega^{(1)} \delta_{m^{\prime \prime} m}\right) \alpha_{m}=0
$$

where

$$
\begin{aligned}
& \mathcal{M}_{m^{\prime \prime} m} \equiv \frac{1}{2 I_{n l}} \int_{0}^{M} \xi_{n l m^{\prime \prime}}^{*} \cdot \mathcal{M}^{(0)}\left(\xi_{n l m}\right) d M_{r}, \\
& I_{n l} \equiv \int_{0}^{M}\left|\xi_{n l m}\right|^{2} d M_{r}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{M} \boldsymbol{\xi}_{n l m^{\prime \prime}}^{*} \cdot \mathcal{M}^{(0)}\left(\boldsymbol{\xi}_{n l m}\right) d M_{r}= \delta_{m^{\prime \prime} m} m \times\left\{\Omega_{0} \int_{0}^{R} \rho(r) r^{2}\left(2 \xi_{r} \xi_{h}+\xi_{h}^{2}\right) d r\right. \\
&+\frac{2 l+1}{2} \frac{(l-|m|)!}{(l+|m|)!} \int_{\theta=0}^{\pi} \int_{r=0}^{R} \rho(r) r^{2} \Omega(r, \theta) \\
& \times\left[\left(-\xi_{r}^{2}+2 \xi_{r} \xi_{h}\right)\left(P_{l}^{m}\right)^{2}\right. \\
&\left.+\xi_{h}^{2}\left[2 P_{l}^{m} \frac{d P_{l}^{m}}{d \theta} \frac{\cos \theta}{\sin \theta}-\left(\frac{d P_{l}^{m}}{d \theta}\right)^{2}-\frac{m^{2}}{\sin ^{2} \theta}\left(P_{l}^{m}\right)^{2}\right]\right] \\
&d r \sin \theta d \theta\} \\
& \int_{0}^{M}\left|\boldsymbol{\xi}^{(0)}\right|^{2} d M_{r}=\int_{0}^{R} \rho(r) r^{2}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] d r
\end{aligned}
$$

Hence

$$
\mathcal{M}_{m^{\prime \prime} m}=\omega^{(1) \mathrm{rot}} \delta_{m^{\prime \prime} m}
$$

$$
\begin{aligned}
\boldsymbol{\omega}_{m} \mathbf{(1) r o t}= & m \times\left\{\Omega_{0} \int_{0}^{R} \rho(r) r^{2}\left(2 \xi_{r} \xi_{h}+\xi_{h}^{2}\right) d r\right. \\
& +\frac{2 l+1}{2} \frac{(l-|m|)!}{(l+|m|)!} \int_{r=0}^{R} \rho(r) r^{2}\left[\int_{\theta=0}^{\pi}\left(P_{l}^{m}\right)^{2}\{\Omega(r, \theta) \sin \theta\right. \\
& \left.\left.\left.\times\left(2 \xi_{r} \xi_{h}-\xi_{r}^{2}+\xi_{h}^{2}[1-l(l+1)]\right)-\left(\frac{3}{2} \frac{\partial \Omega}{\partial \theta} \cos \theta+\frac{1}{2} \frac{\partial^{2} \Omega}{\partial \theta^{2}} \sin \theta\right) \xi_{h}^{2}\right\} d \theta\right] d r\right\} \\
& \times\left[\int_{0}^{R} \rho(r) r^{2}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] d r\right]^{-1}
\end{aligned}
$$

In the case of rigid rotation:

$\left.\omega_{m}^{(1) \text { rot }}\right|_{\text {inertial frame }}=-m\left(1-C_{n l}\right) \Omega$

$$
C_{n l}=\frac{\int_{0}^{R} \rho r^{2}\left[2 \xi_{r} \xi_{h}+\xi_{h}^{2}\right] d r}{\int_{0}^{R} \rho r^{2}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] d r}
$$

Running summary

- The ($2 l+1$)-fold frequency degeneracy is resolved by rotation.
- In a case of uniform slow rotation, the perturbation in frequency due to the Coriolis force is proportional to the rotational angular velocity and to the azimuthal order m.
- In the case of $\Omega=\Omega(r)$, the perturbation in frequency is again linearly proportional to m.

Solar surface latitudinal differential rotation.

Degeneracy lifts -> m-splitting

spherical degree l

Frequency

Observational development : ultra-high precision

SOHO/MDI

color code:

 amplitude
spherical degree l

The inclination is determined by the averaged rotation rate, while the S-shape deviation from straight lines indicate latitudinal dependence of the internal rotation.

$$
\begin{aligned}
\boldsymbol{\omega}_{m}(\mathbf{1}) \mathrm{rot}= & m \times\left\{\Omega_{0} \int_{0}^{R} \rho(r) r^{2}\left(2 \xi_{r} \xi_{h}+\xi_{h}^{2}\right) d r\right. \\
& +\frac{2 l+1}{2} \frac{1(l-|m|)!}{(l+|m|)!} \int_{r=0}^{R} \rho(r) r^{2}\left[\int_{\theta=0}^{\pi}\left(P_{l}^{m}\right)^{2}\{\Omega(r, \theta) \sin \theta\right. \\
& \left.\left.\left.\times\left(2 \xi_{r} \xi_{h}-\xi_{r}^{2}+\xi_{h}^{2}[1-l(l+1)]\right)-\left(\frac{3}{2} \frac{\partial \Omega}{\partial \theta} \cos \theta+\frac{1}{2} \frac{\partial^{2} \Omega}{\partial \theta^{2}} \sin \theta\right) \xi_{h}^{2}\right\} d \theta\right] d r\right\} \\
& \times\left[\int_{0}^{R} \rho(r) r^{2}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] d r\right]^{-1}
\end{aligned}
$$

A set of $\omega_{n l m}{ }^{(1) r o t}$ is regarded as integral equations to determine the 2D internal rotation profile.

Inversion for rotation

perturbation theory

Integral equation :

$$
\begin{gathered}
\delta \omega_{n, l, m}=m\left(1-C_{n, l}\right) \int_{0}^{R} K_{n, l}(r) \Omega(r) d r \\
C_{n, l}=\frac{\int_{0}^{R} \xi_{h}\left(2 \xi_{r}+\xi_{h}\right) r^{2} \rho d r}{\int_{0}^{R}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}\right] r^{2} \rho d r}
\end{gathered}
$$

Kernel :

$$
K_{n, l}=\frac{\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}-2 \xi_{r} \xi_{h}-\xi_{h}^{2}\right] \rho r^{2}}{\int_{0}^{R}\left[\xi_{r}^{2}+l(l+1) \xi_{h}^{2}-2 \xi_{r} \xi_{h}-\xi_{h}^{2}\right] \rho r^{2} d r}
$$

Internal rotation rate

- Helioseismology is a new tool to see the internal rotation of the Sun.
- It was found that the convective zone shows almost the same latitudinal dependence as the surface. Different from the theoretical expectation from the dynamo theory.
- It was found that the radiative interior rotates almost uniformly, and more slowly than expected.
- A strong shear layer ('tachocline') was found just beneath the base of the convection zone.

Another technique: Time-Distance Helioseismology

Another technique: Time-Distance Helioseismology

Meridional flow was detected

latitude

credit: R. Ulrich

End of Lecture

