
Helioseismology

 New eyes to see 
the invisible interior of the Sun
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Robert B. Leighton 
(Sep 10, 1919 – March 9, 1997)



Discovery of Solar 5-minute Oscillation
and 

Supergranulation (1960)

Aiming to study turbulence ... 
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Doppler velocity measurement 

 Musman, S. & Rust, D.M. 1970, Sol. Phys., 13, 261



mass conservation

momentum conservation

energy conservation





𝝆(r,t) = 𝝆0(r) + 𝝆1(r,t) + 𝝆2(r,t) + …

r (t,r0) = r0 + 𝞷(t,r0)

Lagrangian displacement

Lagrangian velocity
               v = dr/dt
where 
d/dt := 𝝏/𝝏t + (v0・𝜵)

is Lagrangian derivative



f (r,t) = f0 (r) + f’ (r,t)

f (r0,t) = f0 (r0) +𝜹f (r0,t)

r (t,r0) = r0 + 𝞷(t,r0)

= f0(r - 𝞷) +𝜹f (r0,t)

=f0(r) -(𝞷・𝜵)f0(r) + 𝜹f (r0,t)

Eulerian view: coordinates fixed

Lagrangian view: mass element fixed



unperturbed flow

perturbed flow

r(t=0,r0) =: r0 

r(t,r0)

r(t)

𝝃(t)

Illustration of Lagrangian displacement δr. The red wavy line shows the perturbed flow, and 
light-blue line shows the unperturbed flow, both for the same fluid element of mass dm.



∴ 𝜹f (r0,t) = f’ (r,t) +(𝞷・𝜵)f0(r) 

To first order,

 𝜹f (r,t) = f’ (r,t) +(𝞷・𝜵)f0(r) 

Lagrangian perturbation: mass element fixed

Eulerian perturbation: coordinates fixed



Time scales

Dynamical timescale : 𝝉dyn = (GM/R3)1/2

Thermal timescale : 𝝉th = ∫cvTdm/L

𝝉dyn ⋘ 𝝉th

Motion is almost adiabatic, that is,
𝜹S = 0, or equivalently,

𝜹p/p= -𝜞1𝜹𝝆/𝝆
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plane parallel isothermal atmosphere

Set 

to derive a dispersion relation:
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Two types of modes
• Acoustic waves

• restoring force = 
gaseous pressure

• high frequency

• stellar envelope

• Gravity waves

• restoring force = 
buoyancy

• low frequency

• stellar deep core



Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development



Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development : Fourier analysis



Deubner, F.-L. 1975, A&A, 44, 371.

Observational development : wider view



• Deubner’s observation shows a set of ridges, 
which was in good agreement with the theoretical 
computation done by Ando & Osaki (1975).

• However, agreement is not perfect. Observed 
ridges have higher frequencies.

• This means that the sound speed of the real Sun 
is higher than the model.

• Since Teff is fixed, this means that the temperature 
gradient is higher in the real Sun.

• This means the convection zone of the real Sun is 
deeper than expected.



Self-excitation
Thermal overstability:

opacity mechanism working in an 
ionization zone

Stochastic excitation due to turbulence:
waves generated by turbulence 
resonate in the cavity of a whole star

Tidally forced oscillation

Excitation mechanisms





Eigenmode: Ylm(θ,φ) exp(iωlmnt)
23

spherical degree l
azimuthal order m
radial order n



Libbrecht, K.G. 1988, ApJ, 334, 510.

Observational development : narrow-band filter



Observational development : 2D disk image



Solar oscillation =∑ almn Ylm(θ,φ) exp(iωlmnt)

26

spherical harmonic analysis
(l, m)

Fourier transform
(almn , ωlmn)



Duvall, T.L., Jr., Harvey, J.W., Libbrecht, K.G., Popp, B.D. & Pomerantz, M.A. 
1988, ApJ, 324, 1158.

Observational development : high to middle range of l
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Woodard, M. & Hudson, H. 1983, Solar Phys., 82, 67. 

Observational development : Brightness variation

clear comb structure = evidence for
low degree l high order n p-modes



Palle, P.L., Perez, J.C., Regulo, C., Roca Cortes, C., Isaak, G.R., McLeod, C.P. & 
van der Raay, H.B. 1986, A&A,169, 313.

Doppler measurement with integrated light



Doppler measurement with integrated light

clear comb structure = evidence for
low degree l high order n p-modes



Gelly, B., Fossat, E., Grec, G. & Schmider, X.-F. 1988, A&A, 200, 207.

Echelle diagram           𝝂nl = 𝚫𝝂 (n+l/2+𝜺)



Gelly, B., Fossat, E., Grec, G. & Schmider, X.-F. 1988, A&A, 200, 207.

Echelle diagram           𝝂nl = 𝚫𝝂 (n+l/2+𝜺)



Observational development : high precision

Libbrecht, K.G., Woodard, M.F. & Kaufman, J.M. 1990, ApJS, 74, 1129



Observational development : high precision



Observational development : ultra-high precision

color code:  
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In order to global structures, we need to zoom out.

http://lambda.gsfc.nasa.gov/product/map/current/m_images.cfm

http://lambda.gsfc.nasa.gov/product/map/current/m_images.cfm


Observed oscillation is 
a superposition of p-
modes of the Sun.

Total number of the 
detected modes is 
nxlxm ~ 10x103x103

Quantitatively different 
from traditional study 
of pulsating stars



�2�
�t2

= �L(�)

Forward problem approach:

• Make a series of equilibrium models with some 
parameters.

• Compute eigenvalues of each model.
• Find the best fitting model by comparing the 

computed eigenvalues and the observed ones.

�2� = L(�; c2, �)

• No guarantee, or no hope, for uniqueness
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Integral equation for inverse problem:

Inverse problem approach:
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�

�� ·
��

�L
�c2

�
�c2 +

�
�L
��

�
��

�
dm

�2� = L(�; c2, �)

• Assume a good model and compute its eigenvalues
• Take differences from the observed frequencies as the LHS
• Solve the above equations as algebraic equations 
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太陽の内部回転

図 太陽固有振動の逆問題によって求めた太陽内部の断熱音
速を，太陽内部の音速の 乗とモデルの音速の 乗との相対差
として示した．黒丸が 乗相対差の推定値を，縦棒の長さが誤
差を，横棒の長さが分解能を示している．r/R⊙ ≃ 0.7 に対流
層の底があり，そこでモデルの音速が小さ過ぎることが分かる．

太陽ニュートリノ問題はニュートリノが質量を持つことでほぼ解決したと考え
られているが，この素粒子物理の非標準モデルについて拘束条件を与えるには，
太陽中心の探査が大きな役目を果たし得ることに変わりはない．そのためには，
モードの検出が重要である．
密度分布も同様にインバージョンによって求められているが，精度 誤差，分

解能 は音速のインバージョンに較べて悪い．
いずれにせよ，現在の太陽モデルはかなり正確であることが確かめられたとい

える．こんなに正確になったのも，日震学からのフィードバックがなされてきた
結果であることは強調しておきたい．

太陽の内部回転

自転による振動数偏移

前節では，太陽が球対称であると考えて，固有振動数からその内部構造を調べ
る方法について述べた．実際の太陽には非球対称な磁場もあり，自転もある．自
転が遅ければ，太陽の構造自体が非球対称になる効果は無視できるが，この場合

Sound speed profile inside the Sun
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The differences are tiny, but meaningful!



Internal Rotation of the Sun

Driving force of Magnetic Dynamos

Driving force of Solar Activities

Influence on Solar Structure & Evolution

42



Influence of rotation

Linearized equation of motion:

�v
�t

+ (v · �)v + 2�0 � v + �0 � �0 � r = ��� � 1
�
�p

Coriolis force
�v�

�t
+ (v0 · �)v� + (v� · �)v0 + 2�0 � v� = ���� + ��

�2 �p0 � 1
�0

�p�



Hence, the linearized equation of motion:

L(�) � �2� + �M(�) = 0

M(�) := 2i[�0 � � + (v0 · �)�]

where



ρ = ρ(0) + ρ(1) + · · · ,

ξ = ξ(0) + ξ(1) + · · · ,

Treat the influence of M as perturbations;

L(�) � �2� + �M(�) = 0

� = �(0) + �(1) + ...

L(0)
�
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�
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v0 = Ω × r = (0, 0, rΩ sin θ)

Ω = [Ω(r, θ) cos θ,−Ω(r, θ) sin θ, 0]

∂er

∂φ
= eφ sin θ,

∂eθ

∂φ
= eφ cos θ,

∂eφ

∂φ
= −er sin θ − eθ cos θ,

1
2
ξ∗

m′′ ·M(0)(ξm) = −mΩξ∗
m′′ · ξm − i(Ω + Ω0)ξ∗m′′,rξm,φ sin θ

−i(Ω + Ω0)ξ∗m′′,θξm,φ cos θ

+i(Ω + Ω0)ξ∗m′′,φ(ξm,r sin θ + ξm,θ cos θ).

In the case of slow rotation (Coriols force dominant):

Note that 

Then 



ξ(0) =
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∑
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∂
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Secular equation (Coriolis force dominant) : 

Mm′′m ≡ 1
2Inl

∫ M

0
ξ∗

nlm′′ ·M(0)(ξnlm)dMr,where 

�l
m=�l

�
Mm��m � �(1)�m��m

�
�m = 0

Inl ≡
∫ M

0
|ξnlm|2dMr
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∫ M

0
ξ∗

nlm′′ ·M(0)(ξnlm)dMr = δm′′mm ×
{

Ω0

∫ R

0
ρ(r)r2

(
2ξrξh + ξ2

h

)
dr
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h
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Hence 

Mm��m = �(1)rot�m��m



σ(1)rot
m = m ×

{
Ω0
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0 ρr2 [ξ2
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In the case of rigid rotation: 

𝝎m(1)rot

�(1)rot
m |inertial frame = �m(1 � Cnl)�



Running summary

The (2l+1)-fold frequency degeneracy is 
resolved by rotation.

In a case of uniform slow rotation, the 
perturbation in frequency due to the Coriolis 
force is proportional to the rotational angular 
velocity and to the azimuthal order m.

In the case of Ω=Ω(r), the perturbation in 
frequency is again linearly proportional to m. 



Solar surface latitudinal differential rotation.

sunspots

spectroscopy
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Observational development : ultra-high precision
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Frequency

m
 / 

l
The inclination is determined by the averaged rotation rate, while 
the S-shape deviation from straight lines indicate latitudinal 
dependence of the internal rotation. 



σ(1)rot
m = m ×

{
Ω0

∫ R

0
ρ(r)r2
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𝝎m(1)rot

A set of 𝝎nlm(1)rot is regarded as integral equations to 
determine the 2D internal rotation profile.
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Figure 12. Rotation kernels of our best model with 1.46M⊙ as functions of
fractional radius (upper panel) and their cumulative profiles (lower panel).
It is clear that the gmode (with l = 1 and n = −28) is strongly weighted
to the interior 10 per cent in radius (30 per cent in mass), and the dipolar
pmode (with l = 1 and n = 2) is strongly weighted to the outer envelope.
The quadrupolar mode (with l = 2 and n = −1) is sensitive to both the
core and the envelope, because it is a mixed mode. The gmode does not
sense the inner few per cent of the core because the core is convective. The
gmode and the quadrupolar mode are strongly trapped by the steep gradient
of the distribution of mean molecular weight, which is located in the range,
0.045 ! r/R ! 0.075 (see Fig. 7).

of the core rotation rate, and that the p-mode splitting constrains
the lower limit of the envelope rate. Combining these points, we
are led to the conclusion. Now the details of the argument follow.

(i) The frequency separations of the gmodes are not exactly half
of those of the pmodes, as has already been pointed out in section
2.3. In fact, if we pay attention to the p- and g-mode triplets with
the highest amplitudes (those centred on f = 1.418 d−1 in Table 2
and f = 18.366 d−1 in Table 1, respectively), whose frequencies
are determined most precisely, their splittings are given by

∆f(p) = 0.0101453 ± 0.0000023 d−1 (8)

and

∆f(g) = 0.0047562 ± 0.0000010 d−1 , (9)

giving

∆f(p)− 2∆f(g) = 0.0006329 ± 0.0000030 d−1 . (10)

Note that we generally put (p) and (g) to quantities that are as-
sociated with these (best-measured) dipolar p and gmodes in this
subsection. Since ∆f = δω/(2π), it can be claimed with strong
statistical significance that

δω(p) > 2δω(g) . (11)

(ii) The Ledoux constant, Cn,l, of high-order dipolar gmodes
is not exactly equal to 1

2
, but is a little smaller. This is because a

detailed asymptotic analysis of high-order dipolar gmodes shows
thatCn,1 approaches 1

2
from below [see equations (A24) and (A26)

in appendix A]. A consequence ofCn,1 < 1
2
with equations (3) and

(7) is that

2δω(g) = 2(1−Cn,1)Ω̄(g) > Ω̄(g). (12)

Namely, the upper limit of Ω̄(g) is given by 2δω(g). The corre-
sponding lower limit of the average rotation period is given by
105.13 ± 0.02 d.
(iii) If Cn,l > 0 for the pmode, the rotation rate in the envelope

is constrained from below. Assuming Cn,l > 0 in equation (3), it is
found

δω(p) = (1− Cn,l)Ω̄(p) < Ω̄(p). (13)

Therefore, the lower limit of Ω̄(p) is provided by δω(p). The cor-
responding upper limit of the average rotation period is given by
98.57 ± 0.02 d.
(iv) Equations (11), (12) and (13) lead to

Ω̄(p) > Ω̄(g), (14)

which implies the rotation rate of envelope layers that are probed
by the pmodes are on average higher than that of core layers that
are diagnosed by the gmodes. The corresponding average rotation
period of the envelope layers is at least 7 per cent shorter than that
of the core layers.

Some comments about the crucial assumption, Cn,l > 0, at
step (iii) above follow. Although it is generally possible to find an
eigenmode withCn,l < 0, such modes seem to be rare (e.g. Gough
2002). In fact, not a single mode with Cn,l < 0 has been found in
any of our evolutionary models in section 3, even if those that can-
not reproduce the observed frequencies are included. On the other
hand, we have confirmed that some low-order dipolar pmodes of
polytropic models with index higher than 3.9 have Cn,l < 0. How-
ever, the values are no less than about −0.002, whereas a value of
Cn,l ! −0.07 would be required to conclude Ω̄(p) ! Ω̄(g).

We stress once again that the above argument is based on only
conservative assumptions that are not influenced by detailed mod-
elling of the star and precise mode identification. For example, one
of our fundamental assumptions is that the pmode is more sensitive
to outer layers of the star than the gmode. This is generally true for
any pair of a pmode and a high-order gmode in any main-sequence
star. Moreover, although we rely on the identification of the gmode
as the one with l = 1 and a large radial order (|n| ≫ 1), the ex-
act value of n need not be specified, as is the case for the pmode.
Therefore, our conclusion of the higher rotation rate in the envelope
than in the core is robust.

4.3 Two-zone modelling

The robust conclusion obtained in the last subsection was made
possible by the structure of the rotation kernels. Independently of
the details of the model, the g-mode kernels are primarily confined
in the core, whereas the p-mode kernels have large amplitudes only

c⃝ 0000 RAS, MNRAS 000, 000–000

��n,l,m = m(1 � Cn,l)
� R
0 Kn,l(r)�(r)dr

Cn,l =
R R
0 �h(2�r+�h)r2�dr

R R
0 [�2

r+l(l+1)�2
h]r2�dr

perturbation theory

Kn,l = [�2
r+l(l+1)�2

h�2�r�h��2
h]�r2

R R
0 [�2

r+l(l+1)�2
h�2�r�h��2

h]�r2dr

Inversion for rotation

Integral equation : 

Kernel : 



Internal rotation rate 
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•Helioseismology is a new tool to see the 
internal rotation of the Sun.

•It was found that the convective zone shows 
almost the same latitudinal dependence as the 
surface. Different from the theoretical 
expectation from the dynamo theory.

•It was found that the radiative interior rotates 
almost uniformly, and more slowly than 
expected.

•A strong shear layer (‘tachocline’) was found 
just beneath the base of the convection zone.



Another technique: Time-Distance Helioseismology



Another technique: Time-Distance Helioseismology



Meridional flow was detected
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credit: R. Ulrich



End of Lecture


