Helioseismology

New eyes to see the invisible interior of the Sun

Robert B. Leighton (Sep 10, 1919 – March 9, 1997)

Aiming to study turbulence ...

Discovery of Solar 5-minute Oscillation and Supergranulation (1960)

Musman, S. & Rust, D.M. 1970, Sol. Phys., 13, 261

mass conservation

$$rac{\partial
ho}{\partial t} +
abla \cdot (
ho v) = 0$$

momentum conservation

$$ho\left(rac{\partial}{\partial t}+v\cdot
abla
ight)v=
ho f-
abla p-
ho
abla \Phi$$

energy conservation

$$ho T\left(rac{\partial}{\partial t}+v\cdot
abla
ight)S=
hoarepsilon-
abla\cdot F$$

$egin{aligned} & ho &= ho_0(r) + ho'(r,t) \ &v &= v_0(r) + v'(r,t) \ &p &= p_0(r) + p'(r,t) \end{aligned}$

 $r = r_0 + \xi$

 $\rho(r,t) = \rho_0(r) + \rho_1(r,t) + \rho_2(r,t) + \dots$

Lagrangian displacement $r(t,r_0) = r_0 + \xi(t,r_0)$ Lagrangian velocity v = dr/dtwhere $d/dt := \partial/\partial t + (v_0 \cdot \nabla)$ is Lagrangian derivative

Eulerian view: coordinates fixed

 $f(r,t) = f_0(r) + f'(r,t)$

Lagrangian view: mass element fixed

 $f(r_0, t) = f_0(r_0) + \delta f(r_0, t)$ = $f_0(r - \xi) + \delta f(r_0, t)$ = $f_0(r) - (\xi \cdot \nabla) f_0(r) + \delta f(r_0, t)$

 $r(t,r_0) = r_0 + \xi(t,r_0)$

Illustration of Lagrangian displacement δr . The red wavy line shows the perturbed flow, and light-blue line shows the unperturbed flow, both for the same fluid element of mass dm.

Lagrangian perturbation: mass element fixed Eulerian perturbation: coordinates fixed

$$\therefore \delta f(r_0,t) = f'(r,t) + (\boldsymbol{\xi} \cdot \boldsymbol{\nabla}) f_0(r)$$

To first order,

$$\delta f(r,t) = f'(r,t) + (\boldsymbol{\xi} \cdot \boldsymbol{\nabla}) f_0(r)$$

Time scales

Dynamical timescale : $\tau_{dyn} = (GM/R^3)^{1/2}$

Thermal timescale : $\tau_{th} = \int c_v T dm/L$

 $\tau_{dyn} \ll \tau_{th}$ Motion is almost adiabatic, that is, $\delta S = 0$, or equivalently,

 $\delta p/p = -\Gamma_1 \delta \rho/\rho$

$$rac{\partial
ho'}{\partial t} +
abla \cdot (
ho_0 v') = 0$$

$\rho_0 \frac{\partial v}{\partial t} + \nabla p' + \rho_0 \nabla \Phi' + \rho' \nabla \Phi_0 = 0$

$$egin{aligned} &rac{\delta p}{p_0} = \gamma rac{\delta
ho}{
ho_0} \ &rac{\partial p'}{\partial t} - c_0^2 rac{\partial
ho'}{\partial t} -
ho_0 c_0^2 (rac{d\ln
ho_0}{dr} - rac{1}{\Gamma_1} rac{d\ln p_0}{dr}) v_r = 0 \end{aligned}$$

plane parallel isothermal atmosphere

$$ho \propto \exp(-z/H_{
ho})$$
 $c^2 = \gamma p/
ho$

Set

$$\boldsymbol{\xi}, \frac{p'}{\rho}, \frac{\rho'}{\rho_0} \propto \exp\left(\frac{z}{2H_{\rho}}\right) \exp(i\boldsymbol{k}\cdot\boldsymbol{x} + i\omega t)$$

to derive a dispersion relation:

 $\omega^{4} - \omega^{2} \left(c^{2} k^{2} + \omega_{\rm ac}^{2} \right) + N^{2} c^{2} k_{\rm h}^{2} = 0$

Two types of modes

- Acoustic waves
- restoring force = gaseous pressure
- high frequency
- stellar envelope

- Gravity waves
- restoring force = buoyancy
- low frequency
- stellar deep core

Observational development

Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development : Fourier analysis

Frazier, E.N. 1968, Zs.f.Astrophysik, 68, 345

Observational development : wider view

Deubner, F.-L. 1975, A&A, 44, 371.

- Deubner's observation shows a set of ridges, which was in good agreement with the theoretical computation done by Ando & Osaki (1975).
- However, agreement is not perfect. Observed ridges have higher frequencies.
- This means that the sound speed of the real Sun is higher than the model.
- Since *T*_{eff} is fixed, this means that the temperature gradient is higher in the real Sun.
- This means the convection zone of the real Sun is deeper than expected.

Excitation mechanisms

Self-excitation

Thermal overstability:

opacity mechanism working in an ionization zone

Stochastic excitation due to turbulence:

waves generated by turbulence resonate in the cavity of a whole star

spherical degree azimuthal order radial order *n*

Eigenmode: $Y_{lm}(\theta, \phi) \exp(i\omega_{lmn}t)$

Observational development : narrow-band filter

Libbrecht, K.G. 1988, ApJ, 334, 510.

Observational development : 2D disk image

Solar oscillation = $\sum a_{lmn} Y_{lm}(\theta, \phi) \exp(i\omega_{lmn}t)$

spherical harmonic analysi → (*l*, *m*)

Fourier transform

 \rightarrow (a_{lmn}, ω_{lmn})

Observational development : high to middle range of *l*

Duvall, T.L., Jr., Harvey, J.W., Libbrecht, K.G., Popp, B.D. & Pomerantz, M.A. 1988, ApJ, 324, 1158.

Total Solar Irradiance

- TSI is lower this minimum than the previous two
- Unexpected change after a greatly disputed increase in the previous minimum
- · Few mechanisms exist for magnetic changes in the basal solar luminosity

Observational development : Brightness variation clear comb structure = evidence for low degree *l* high order *n* p-modes

Woodard, M. & Hudson, H. 1983, Solar Phys., 82, 67.

Doppler measurement with integrated light

Palle, P.L., Perez, J.C., Regulo, C., Roca Cortes, C., Isaak, G.R., McLeod, C.P. & van der Raay, H.B. 1986, A&A,169, 313.

Doppler measurement with integrated light

clear comb structure = evidence for low degree *l* high order *n* p-modes

Echelle diagram $v_{nl} = \Delta v (n+l/2+\varepsilon)$

Gelly, B., Fossat, E., Grec, G. & Schmider, X.-F. 1988, A&A, 200, 207.

Echelle diagram $v_{nl} = \Delta v (n+l/2+\varepsilon)$

Gelly, B., Fossat, E., Grec, G. & Schmider, X.-F. 1988, A&A, 200, 207.

Observational development : high precision

Libbrecht, K.G., Woodard, M.F. & Kaufman, J.M. 1990, ApJS, 74, 1129

Observational development : high precision

Observational development : ultra-high precision

SOHO/MDI

color code: amplitude

In order to global structures, we need to zoom out.

http://lambda.gsfc.nasa.gov/product/map/current/m_images.cfm

Observed oscillation is a superposition of pmodes of the Sun.

Total number of the detected modes is *nxlxm* ~ 10x10³x10³

Quantitatively different from traditional study of pulsating stars

Forward problem approach:

- Make a series of equilibrium models with some parameters.
- Compute eigenvalues of each model.
- Find the best fitting model by comparing the computed eigenvalues and the observed ones.

$$rac{\partial^2 \pmb{\xi}}{\partial t^2} = - \mathcal{L}(\pmb{\xi})$$

$$\omega^2 \xi = \mathcal{L}(\xi; c^2,
ho)$$

No guarantee, or no hope, for uniqueness

Inverse problem approach:

$$\omega^2 \xi = \mathcal{L}(\xi; c^2,
ho)$$

Integral equation for inverse problem:

$$egin{aligned} &\omega^2 = \int \xi^* \cdot \mathcal{L}(\xi) \, dm / \int |\xi|^2 \, dm \ &\delta\omega^2 = \int \xi^* \cdot \left[\left(rac{\partial \mathcal{L}}{\partial c^2}
ight) \, \delta c^2 + \left(rac{\partial \mathcal{L}}{\partial
ho}
ight) \, \delta
ho
ight] dm \end{aligned}$$

- Assume a good model and compute its eigenvalues
- Take differences from the observed frequencies as the LHS
- Solve the above equations as algebraic equations

Sound speed profile inside the Sun

The differences are tiny, but meaningful!

41

Internal Rotation of the Sun

Driving force of Magnetic Dynamos
 Driving force of Solar Activities
 Influence on Solar Structure & Evolution

Influence of rotation

$$rac{\partial v}{\partial t} + (v \cdot
abla) v + 2 \Omega_0 imes v + \Omega_0 imes \Omega_0 imes r = -
abla \Phi - rac{1}{
ho}
abla p$$

Linearized equation of motion:

$$\frac{\partial v'}{\partial t} + (v_0 \cdot \nabla)v' + (v' \cdot \nabla)v_0 + 2\Omega_0 \times v' = -\nabla \Phi' + \frac{\rho'}{\rho^2} \nabla p_0 - \frac{1}{\rho_0} \nabla p'$$

Coriolis force

Hence, the linearized equation of motion:

$$\mathcal{L}(\xi) - \omega^2 \xi + \omega \mathcal{M}(\xi) = 0$$

where

 $\mathcal{M}(\xi) := 2i[\overline{\Omega_0 imes \xi + (v_0 \cdot
abla)}]$

$$\mathcal{L}(\xi) - \omega^2 \xi + \omega \mathcal{M}(\xi) = 0$$

Treat the influence of *M* as perturbations;

$$\begin{split} \rho &= \rho^{(0)} + \rho^{(1)} + \cdots, \\ \pmb{\xi} &= \pmb{\xi}^{(0)} + \pmb{\xi}^{(1)} + \cdots, \\ \omega &= \omega^{(0)} + \omega^{(1)} + \dots \end{split}$$

 $\mathcal{L}^{(0)}\left(\xi^{(0)}
ight) - \omega^{(0)2}\xi^{(0)} = 0$

 $\mathcal{L}^{(0)}\left(\xi^{(1)}
ight) + \mathcal{L}^{(1)}\left(\xi^{(0)}
ight) - \omega^{(0)2}\xi^{(1)} - 2\omega^{(0)}\omega^{(1)}\xi^{(0)} + \omega^{(0)}\mathcal{M}^{(0)}\left(\xi^{(0)}
ight) = 0$

In the case of slow rotation (Coriols force dominant):

$$oldsymbol{v}_0 = oldsymbol{\Omega} imes oldsymbol{r} = (0, 0, r\Omega \sin heta)$$

 $oldsymbol{\Omega} = [\Omega(r, heta) \cos heta, -\Omega(r, heta) \sin heta, 0]$

Note that

$$\frac{\partial \boldsymbol{e}_r}{\partial \phi} = \boldsymbol{e}_\phi \sin \theta,$$

$$\frac{\partial \boldsymbol{e}_{\theta}}{\partial \phi} = \boldsymbol{e}_{\phi} \cos \theta,$$

$$rac{\partial oldsymbol{e}_{\phi}}{\partial \phi} = -oldsymbol{e}_r \sin heta - oldsymbol{e}_{ heta} \cos heta,$$

Then

$$\frac{1}{2}\boldsymbol{\xi}_{m''}^{*}\cdot\mathcal{M}^{(0)}(\boldsymbol{\xi}_{m}) = -m\Omega\boldsymbol{\xi}_{m''}^{*}\cdot\boldsymbol{\xi}_{m} - i(\Omega+\Omega_{0})\boldsymbol{\xi}_{m'',r}^{*}\boldsymbol{\xi}_{m,\phi}\sin\theta$$
$$-i(\Omega+\Omega_{0})\boldsymbol{\xi}_{m'',\theta}^{*}\boldsymbol{\xi}_{m,\phi}\cos\theta$$
$$+i(\Omega+\Omega_{0})\boldsymbol{\xi}_{m'',\phi}^{*}(\boldsymbol{\xi}_{m,r}\sin\theta+\boldsymbol{\xi}_{m,\theta}\cos\theta).$$

$$\boldsymbol{\xi}^{(0)} = \sum_{m=-l}^{l} \alpha_m \boldsymbol{\xi}_{nlm}$$

$$\boldsymbol{\xi}^{(1)} = \sum_{m'}^{m=-l} \sum_{n'l'}^{l'} \beta_{n'l'm'} \boldsymbol{\xi}_{n'l'm'} + \sum_{l'm'} \gamma_{l'm'}(r) \boldsymbol{\eta}_{l'm'}$$

$$\boldsymbol{\eta}_{l'm'} \equiv \frac{1}{[l'(l'+1)]^{1/2}} \left(0, \frac{1}{\sin\theta} \frac{\partial}{\partial\phi}, -\frac{\partial}{\partial\theta} \right) Y_{l'}^{m'}(\theta, \phi)$$

Secular equation (Coriolis force dominant) :

$$\sum_{m=-l}^{l} \left(\mathcal{M}_{m^{\prime\prime}m} - \omega^{(1)} \delta_{m^{\prime\prime}m}
ight) lpha_m = 0$$

where
$$\mathcal{M}_{m''m} \equiv \frac{1}{2I_{nl}} \int_0^M \boldsymbol{\xi}_{nlm''}^* \cdot \mathcal{M}^{(0)}(\boldsymbol{\xi}_{nlm}) dM_r,$$

 $I_{nl} \equiv \int_0^M |\boldsymbol{\xi}_{nlm}|^2 dM_r$

$$\frac{1}{2} \int_0^M \boldsymbol{\xi}_{nlm''}^* \cdot \mathcal{M}^{(0)}(\boldsymbol{\xi}_{nlm}) dM_r = \delta_{m''m} m \times \left\{ \Omega_0 \int_0^R \rho(r) r^2 \left(2\xi_r \xi_h + \xi_h^2 \right) dr + \frac{2l+1}{2} \frac{(l-|m|)!}{(l+|m|)!} \int_{\theta=0}^\pi \int_{r=0}^R \rho(r) r^2 \Omega(r,\theta) \times \left[\left(-\xi_r^2 + 2\xi_r \xi_h \right) (P_l^m)^2 + \xi_h^2 \left[2P_l^m \frac{dP_l^m}{d\theta} \frac{\cos\theta}{\sin\theta} - \left(\frac{dP_l^m}{d\theta} \right)^2 - \frac{m^2}{\sin^2\theta} (P_l^m)^2 \right] \right] dr \sin\theta d\theta \right\}$$

$$\int_0^M |\boldsymbol{\xi}^{(0)}|^2 dM_r = \int_0^R \rho(r) r^2 \left[\xi_r^2 + l(l+1)\xi_h^2\right] dr$$

Hence

$$\mathcal{M}_{m^{\prime\prime}m}=\omega^{(1)\mathrm{rot}}\delta_{m^{\prime\prime}m}$$

$$\boldsymbol{\omega_{m}^{(1)rot}} = m \times \left\{ \Omega_{0} \int_{0}^{R} \rho(r) r^{2} \left(2\xi_{r}\xi_{h} + \xi_{h}^{2} \right) dr + \frac{2l+1}{2} \frac{(l-|m|)!}{(l+|m|)!} \int_{r=0}^{R} \rho(r) r^{2} \left[\int_{\theta=0}^{\pi} \left(P_{l}^{m} \right)^{2} \left\{ \Omega(r,\theta) \sin \theta \right\} \times \left(2\xi_{r}\xi_{h} - \xi_{r}^{2} + \xi_{h}^{2} [1-l(l+1)] \right) - \left(\frac{3}{2} \frac{\partial \Omega}{\partial \theta} \cos \theta + \frac{1}{2} \frac{\partial^{2} \Omega}{\partial \theta^{2}} \sin \theta \right) \xi_{h}^{2} \right\} d\theta dr \right\} \times \left[\int_{0}^{R} \rho(r) r^{2} \left[\xi_{r}^{2} + l(l+1) \xi_{h}^{2} \right] dr \right]^{-1}$$

In the case of rigid rotation: $\omega_m^{(1){
m rot}}ert_{
m inertial\ frame}=-m(1-C_{nl})\Omega$

$$C_{nl} = \frac{\int_0^R \rho r^2 \left[2\xi_r \xi_h + \xi_h^2\right] dr}{\int_0^R \rho r^2 \left[\xi_r^2 + l(l+1)\xi_h^2\right] dr}$$

Running summary

The (2*l*+1)-fold frequency degeneracy is resolved by rotation.

In a case of uniform slow rotation, the perturbation in frequency due to the Coriolis force is proportional to the rotational angular velocity and to the azimuthal order *m*.

Solution In the case of $\Omega = \Omega(r)$, the perturbation in frequency is again linearly proportional to *m*.

Solar surface latitudinal differential rotation.

Degeneracy lifts -> m-splitting

Frequency

Observational development : ultra-high precision

SOHO/MDI

color code: amplitude

spherical degree *l*

The inclination is determined by the averaged rotation rate, while the S-shape deviation from straight lines indicate latitudinal dependence of the internal rotation.

m / 1

$$\begin{split} \boldsymbol{\omega}_{m}^{(1)\text{rot}} &= m \times \left\{ \Omega_{0} \int_{0}^{R} \rho(r) r^{2} \left(2\xi_{r}\xi_{h} + \xi_{h}^{2} \right) dr \\ &+ \frac{2l+1}{2} \frac{(l-|m|)!}{(l+|m|)!} \int_{r=0}^{R} \rho(r) r^{2} \left[\int_{\theta=0}^{\pi} \left(P_{l}^{m} \right)^{2} \left\{ \Omega(r,\theta) \sin \theta \right. \\ &\times \left(2\xi_{r}\xi_{h} - \xi_{r}^{2} + \xi_{h}^{2} [1-l(l+1)] \right) - \left(\frac{3}{2} \frac{\partial \Omega}{\partial \theta} \cos \theta + \frac{1}{2} \frac{\partial^{2} \Omega}{\partial \theta^{2}} \sin \theta \right) \xi_{h}^{2} \right\} d\theta \right] dr \right\} \\ &\times \left[\int_{0}^{R} \rho(r) r^{2} \left[\xi_{r}^{2} + l(l+1) \xi_{h}^{2} \right] dr \right]^{-1} \end{split}$$

A set of $\omega_{nlm}^{(1)rot}$ is regarded as integral equations to determine the 2D internal rotation profile.

Inversion for rotation

perturbation theory

Integral equation :

$$\delta \omega_{n,l,m} = m(1-C_{n,l})\int_0^R K_{n,l}(r)\Omega(r)dr$$

$$C_{n,l} = rac{\int_0^R \xi_h (2\xi_r + \xi_h) r^2
ho dr}{\int_0^R [\xi_r^2 + l(l+1)\xi_h^2] r^2
ho dr}$$

Kernel :

$$K_{n,l} = rac{[\xi_r^2 + l(l+1)\xi_h^2 - 2\xi_r\xi_h - \xi_h^2]
ho r^2}{\int_0^R [\xi_r^2 + l(l+1)\xi_h^2 - 2\xi_r\xi_h - \xi_h^2]
ho r^2 dr}$$

Internal rotation rate

- Helioseismology is a new tool to see the internal rotation of the Sun.
- It was found that the convective zone shows almost the same latitudinal dependence as the surface. Different from the theoretical expectation from the dynamo theory.
- It was found that the radiative interior rotates almost uniformly, and more slowly than expected.
- A strong shear layer ('tachocline') was found just beneath the base of the convection zone.

Another technique: Time-Distance Helioseismology

Another technique: Time-Distance Helioseismology

Meridional flow was detected

latitude

credit: R. Ulrich

End of Lecture