4. Background Emission from Space

The background emission from space is about 10⁶ times smaller than from the ground. Therefore the first spacecraft to observe it, the InfraRed Astronomical Spacecraft (IRAS) made a number of important discoveries. One discovery was the numerous fine structure of the dust emission throughout the Galaxy as shown in the image to the right. This is an image of the constellation Orion, covering an area of 30°x24°.

Notes: Image from https://apod.nasa.gov/apod/ap050419.html.

The fine structure is called the "infrared cirrus" since it resembles terrestrial clouds.

The IRAS satellite was launched in 1983 and accomplished a sensitive all sky survey at 12, 25, 60 and 100 µm.

http://m.esa.int/spaceinimages/Images/2007/07/The_constellation_Orion_and_the_winter_Milky_Way

An image of the Orion A star-formation cloud made by the Herschel space observatory. This is a region were massive star formation taking place. Cooler gas and dust is seen in red and yellow, The point-like sources shows where new stars are forming. The image is a composite of images made at 70 μ m (blue), 160 μ m (green) and 250 μ m (red). The region covered is about 1.3° x 2.4°. North is up and east is to the left.

The Herschel space craft was launched in 2009 by ESA and was designed to operate from 55-672 $\mu\text{m}.$

A. Tokunaga, Introduction to Infrared Astronomy, Univ. of Tokyo Visiting Professor Lecture, Feb. 2018

Notes: Image is from: http://www.esa.int/Our Activities/Space Science/Highlights/Herschel images

References: http://www.esa.int/Our_Activities/Space_Science/Herschel; https://en.wikipedia.org/wiki/Herschel_Space_Observatory

Detailed view of the Orion nebula (to the right) observed by the Herschel spacecraft. The image is a composite of images made at 70 microns (blue), 160 microns (green) and 250 microns (red). It covers a region of 4.5x1.5 degrees. The image is oriented with northeast towards the left of the image and southwest towards the right. To the left are the regions of NGC 2068 and NGC 2071.

4-4

Notes:

 $http://m.esa.int/var/esa/storage/images/esa_multimedia/images/2013/04/herschel_s_view_of_the_horsehead_nebula/12631139-1-eng-GB/Herschel_s_view_of_the_Horsehead_Nebula_article_mob.jpg$

Notes: Image from: https://lambda.gsfc.nasa.gov/product/cobe/cobe image table.cfm

The Cosmic Background Observer (COBE) was launched in 1989 and was designed to measure the cosmic background radiation that resulted from the Big Bang.

Diffuse InfraRed Background Experiment (DIRBE) was a multi-wavelength infrared imager on COBE to observe dust emission. It observed at 1.25, 2.2, 3.5, 4.9, 12, 25, 60, 100, 140, 240 µicrometers.

Reference: https://lambda.gsfc.nasa.gov/product/cobe/; https://en.wikipedia.org/wiki/Cosmic_Background_Explorer

This is a Mollweide projection map, where relative areas of the sky is preserved but there is some distortion.

Notes: Image from: https://lambda.gsfc.nasa.gov/product/cobe/dirbe_image.cfm

See also: Kelsall, T. et al. (1998). "The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud." <u>The Astrophysical Journal</u> **508**: 44-73.

Notes: Image is from: http://www.ir.isas.jaxa.jp/AKARI/Observation/support/WS/20150320_ASJ/FISmap_Doi_150320.pdf References: http://www.ir.isas.jaxa.jp/AKARI/;

Notes: Image from: https://lambda.gsfc.nasa.gov/product/foreground/f_images.cfm IRAS 25, 60, and 100 um Composite Map Logarithmic scale

Maps from the Improved Reprocessing of the IRAS Survey (IRIS) were used to produce this 3-color composite image of the infrared sky. The 25, 60 and 100 um data are represented as blue, green, and red, respectively. Low-level residuals from removal of the zodiacal light show as stripes parallel to the ecliptic.

All-sky image of the sky was made from images obtained with the Planck spacecraft from 30 GHz to 857 GHz (350 µm to 10 mm). The central plane of the Milky Way galaxy goes across the center of this map. Diffuse emission from gas and dust show up in a bluish color. The **Cosmic Microwave** Background can be seen at high galactic latitudes where the gas and dust emission is very small.

The Planck spacecraft was launched by ESA in 2009 and it was designed to map the Cosmic Microwave Background following the initial measurements by COBE.

A. Tokunaga, Introduction to Infrared Astronomy, Univ. of Tokyo Visiting Professor Lecture, Feb. 2018

4-9

Notes: Image from: http://www.esa.int/spaceinimages/Images/2010/07/The_microwave_sky_as_seen_by_Planck3

References: http://www.esa.int/Our_Activities/Space_Science/Planck; https://en.wikipedia.org/wiki/Planck_(spacecraft)

Notes: Image is from: http://www.esa.int/spaceinimages/Images/2013/04/Planck_CMB_black_background

The thermal infrared background in space
There are four primary sources of diffuse emission exists:
 Solar System – thermal emission from interplanetary dust particles. In the near-IR there is scattered sunlight from interplanetary dust particles.
Galactic – interstellar dust emission with much fine structure
Extragalactic – emission from unresolved sources
Cosmic microwave background
A. Tokunaga, Introduction to Infrared Astronomy, Univ. of Tokyo 4- 11 Visiting Professor Lecture, Feb. 2018

Notes: The background in space comes from the solar system (zodiacal light), interstellar dust emission from the galaxy, emission from unresolved galaxies, and the cosmic microwave background.

GBT=Ground-Based Telescope; ZSL=Zodiacal Scattered Light, ZE=Zodiacal Emission, SEP=South Ecliptic Pole, CST=Cooled Space Telescope, GBE=Galactic Background Emission, CMB=Cosmic Microwave Background

Reference: Tokunaga, A. T. (2000). Infrared Astronomy. <u>Allen's Astrophysical Quantities, 4th edition</u>. A. N. Cox. New York, Springer-Verlag: 143.

Average OH emission of 15.6 and 13.8 mag arcsec ^{-2} at J and H, respectively (see slides 3.2-3.5, 3.10).
Ground-based telescope thermal emission, optimized for the thermal infrared and approximated as a 273-K blackbody with $e = 0.02$. Emission from the Earth's atmosphere at 1.5-25 µm is shown (see slides 3.18 - 3.19.
Zodiacal scattered light at the ecliptic pole, approximated as a 5800-K blackbody with $e = 3x10^{-14}$; see also Kelsall et al. (1998), Tsumura et al. (2010).
Zodiacal emission from interplanetary dust at the ecliptic pole, approximated as a 275-K blackbody with $e = 7.1 \times 10^{-8}$. Based on observations from the Infrared Astronomical Satellite (IRAS); Kelsall et al. (1998), Leinert et al. (1998).
Galactic background emission from interstellar dust in the plane of the galaxy. In regions away from the Galactic Center, it can be approximated by a 17-K blackbody and $e = 10^{-3}$; Sodroski et al. (1994), Cox and Mezger (1989).
South ecliptic pole emission as measured by the Cosmic Background Explorer (COBE) spacecraft; Wright (1993).
Cryogenic space telescope, cooled to 10 K with $e = 0.05$.
Cosmic Microwave Background, 2.73-K blackbody with e = 1.0; Mather et al. (1994).

References:

Roche, P. F. (2004). "Mid-infrared instruments on the Gemini 8-m telescopes." <u>Advances in Space Research</u> **34**: 583-588. Kelsall, T. et al. (1998). "The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud." <u>The Astrophysical Journal</u> **508**: 44-73.

Tsumura, K. et al. (2010). "Observations of the Near-infrared Spectrum of the Zodiacal Light with CIBER." <u>The Astrophysical</u> Journal **719**: 394-402.

Leinert, C. et al. (1998). "The 1997 reference of diffuse night sky brightness." <u>Astronomy and Astrophysics Supplement Series</u> **127**: 1-99.

Sodroski, T. J. et al. (1994). "Large-scale characteristics of interstellar dust from COBE DIRBE observations." <u>The Astrophysical</u> Journal **428**: 638-646.

Cox, P. and P. G. Mezger (1989). "The Galactic infrared/submillimeter dust radiation." <u>Astronomy and Astrophysics Review</u> 1: 49-83.

Wright, E. L. (1993). COBE experience. Infrared Spaceborne Remote Sensing, SPIE, 2019: 158-166.

Mather, J. C. et al. (1994). "Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument." <u>The Astrophysical Journal</u> **420**: 439-444.

Notes: This is a very simplified plot. It shows that the background in space has three main components: (1) scattered light and emission from dust particles in the solar system (zodiacal light), (2) far-infrared emission from cold dust in the interstellar medium and unresolved background galaxies, and (3) the cosmic microwave background from the Big Bang.

The background varies greatly depending on where you are looking relative to the ecliptic and the plane of the Milky Way galaxy as can be seen from the slides 3.1 - 3.7.

Notes: Reference: Compiègne, M., L. et al. (2011). "The global dust SED: tracing the nature and evolution of dust with DustEM." <u>Astronomy and Astrophysics</u> **525**: A103.

Strong emission bands at 8-20 micrometers from carbonaceous material in the interstellar medium (PAH or UIR emission) are seen. Carbon and silicate dust particles also contribute to the total emission spectrum.

1983 Infrared Astronomy Satellite (IRAS; 0.57m)		
1995 Infrared Space Observatory (ISO: 0.60m)		
1995 Infrared Telescope in Space (IRTS; 0.15m)		
1996 Midcourse Space Experiment (MSX; 0.35m)		
1998 Submillimeter Wave Astronomy Telescope (SWAS; 0.55m x 0.71m)		
2001 Wilkinson Microwave Anisotropy Probe (WMAP; 1.4m x 1.6m)		
2003 Spitzer Space Telescope (SST; 0.85m)		
2006 Akari (0.67m) 2009 Wide-field Infrared Survey Explorer (WISE: 0.40m)		
2009 Wide-field finialed Survey Explorer (WISE, 0.4011)		
2009 Planck (1.9m x 1.5m)		
2019 James Webb Space Telescope (JWST; 6 m)		
A. Tokunaga, Introduction to Infrared Astronomy, Univ. of Tokyo	4-16	

Notes: This slide was presented earlier. Reminder of the long heritage of space observatories and the data that is available in the archives.

Now I will discuss the backgrounds in space in the context of JWST, Herschel, and SPICA (a possible future space observatory).

Notes: Brief overview of JWST. More detailed description in a later lecture.

Notes: M. Greenhouse, 2009, presentation on "James Webb Space Telescope (JWST) Mission Overview".

Swinyard, B. M. et al. (2004). Sensitivity estimates for the mid-infrared instrument (MIRI) on the JWST. <u>Optical, Infrared, and Millimeter Space Telescopes</u>, SPIE, **5487**: 785-793.

Notes: Both Herschel and JWST are passively cooled by letting the telescope come to equilibrium with space background emission.

JWST comes to a cooler temperature because it has a large sunshield. The operational temperature of the Herschel telescope mirror was about 85K. The operational temperature of the JWST mirror is planned to be about 50K.

SPICA = Space Infrared Telescope for Cosmology and Astrophysics

The current goal is that SPICA will have an aperture of 2.5 m, the same as Herschel but actively cooled to 4-6 K.

Nakagawa, T. et al. (2014). The next-generation infrared astronomy mission SPICA under the new framework. <u>Space Telescopes</u> and Instrumentation, SPIE, **9143**.

Pilbratt, G. L. et al. (2010). "Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy." Astronomy and Astrophysics **518**: L1.

For a discussion on the background emission in space, see Denny, S. P. et al. (2013). "Fundamental limits of detection in the far infrared." <u>New Astronomy</u> 25: 114-129.

There is a tremendous amount of data that can be retrieved from online databases. Perusing these databases will be useful in future work.