受験番号	
氏 名	

東京大学大学院理学系研究科天文学専攻

令和2年度修士·博士課程入学試験問題

専 門 科 Ħ

令和元年8月20日(火) 13時30分-17時30分

[注意事項]

- 1. 試験開始の合図があるまで、この問題冊子を開いてはならない.
- 2. 問題冊子は、この表紙を含めて全部で 20ページである.
- 3. 答案用紙は各問につき1枚,計4枚配付してある. 確実に配付されていることを確かめよ.
- 4. 問題は数学2問,物理学2問,天文学2問の計6問である.この中から,数学と物理学のそれぞ れ少なくとも1問を含む4問を選んで解答せよ.
- 5. 問題冊子の所定欄に受験番号及び氏名を必ず記入せよ.
- 6. 各答案用紙の所定欄に, 問題番号, 受験番号, 及び氏名を必ず記入せよ. 問題番号は "数学1", " 物理学 2", "天文学 1" などのように, 科目と番号で記入せよ.
- 7. 解答は各問ごとに1枚の答案用紙を使用せよ. 必要なら裏ページを使用してもよい.
- 8. 解答できない場合でも、4枚全ての答案用紙に問題番号、受験番号、及び氏名を必ず記入して提 出せよ.
- 9. 草稿用紙は別に4枚配付するが、足りなくなった場合は手を挙げて請求すること.
- 10. 答案用紙を草稿用紙として使用してはならない.
- 11. 解答においては、途中の計算過程を省略せずに記述すること.

[数学 1]

以下の設問に答えよ.

問1. 0以上の整数nに対して,

$$I_n = \int_0^{\pi/2} \sin^n x dx \tag{1}$$

と置く. I_n の満たす漸化式を導くことにより積分 I_n の値を求めよ.

問 2. 以下の積分を求めよ. ただし m, n は 0 以上の整数である.

(a)

$$\int_0^{\pi/2} \cos^n x dx \tag{2}$$

(b)

$$\int_0^{\pi/2} \sin^m x \cos^n x dx \tag{3}$$

問3. 問1の結果を用いて以下の式を証明せよ.

$$\lim_{n \to \infty} \frac{2^{2n} (n!)^2}{\sqrt{n} (2n)!} = \sqrt{\pi}$$
(4)

問 4. 以下の数列 a_n は $n \to \infty$ で 0 ではない定数 A に収束する. このとき, 式 (4) を用いて定数 A が $\sqrt{2\pi}$ であることを示せ.

$$a_n = \frac{n!e^n}{n^n \sqrt{n}} \tag{5}$$

[数学 2]

ω, *m*, *u* を, それぞれ *n* 個の実数を要素に持つベクトル

$$oldsymbol{\omega} = egin{pmatrix} \omega_1 \ \omega_2 \ dots \ \omega_n \end{pmatrix}, \quad oldsymbol{m} = egin{pmatrix} m_1 \ m_2 \ dots \ m_n \end{pmatrix}, \quad oldsymbol{u} = egin{pmatrix} u_1 \ u_2 \ dots \ u_n \end{pmatrix},$$

とした時, 関数 $M(\omega)$ が以下の式(1) で与えられている.

$$M(\boldsymbol{\omega}) = \exp\left[i\boldsymbol{m}^{T}\boldsymbol{\omega} - \frac{1}{2}\boldsymbol{\omega}^{T}C\boldsymbol{\omega}\right]$$
(1)

ここで*i*は虚数単位, *C*は*n*×*n*の正定値実対称行列であり, *C*の固有値 λ_j (*j* = 1,2,···,*n*) はすべ て異なるとする. またベクトルあるいは行列 *X* を転置した結果を *X^T* と表す. この時, 式 (2) で表さ れる *M*(ω) の積分変換 *P*(u) を求めたい.

$$P(\boldsymbol{u}) = \frac{1}{(2\pi)^n} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} M(\boldsymbol{\omega}) \exp\left(-i\boldsymbol{u}^T\boldsymbol{\omega}\right) d\omega_1 d\omega_2 \cdots d\omega_n$$
(2)

以下の問1から問4に答えよ.

問 1. C の行列式を |C| と表したとき, C のすべての固有値の積は |C| に等しいことを示せ.

問2.式(1)を

$$M(\boldsymbol{\omega}) \exp\left(-i\boldsymbol{u}^T \boldsymbol{\omega}\right) = \exp\left[-\frac{1}{2}(\boldsymbol{\omega} - \boldsymbol{z})^T C(\boldsymbol{\omega} - \boldsymbol{z}) + b\right]$$
(3)

と表したとき, z および $b \in C$, u, m を用いて表せ. ただし z は複素ベクトル, b は実数であり, どちらも ω の関数でない.

問 3. *C*を対角化する直交行列(転置行列が逆行列に等しい行列)*F*を用いて,変数変換 $\omega - z = Fy$ を式(3)に対して行うことにより, P(u)が以下の式で表されることを示せ.

$$P(\boldsymbol{u}) = \frac{e^b}{(2\pi)^n} \prod_{j=1}^n \int_{-\infty+ia_j}^{\infty+ia_j} \exp\left(-\frac{1}{2}\lambda_j y_j^2\right) dy_j \tag{4}$$

ここで y_i は複素ベクトルyのj成分, a_i は変数変換で定まる有限の実定数である.

$$P(\boldsymbol{u}) = \frac{1}{(2\pi)^{n/2} |C|^{1/2}} \exp\left[-\frac{1}{2} (\boldsymbol{u} - \boldsymbol{m})^T C^{-1} (\boldsymbol{u} - \boldsymbol{m})\right]$$
(5)

となることを示せ. ここで *C*⁻¹ は *C* の逆行列を表す. また, ガウス関数が複素平面全域で正則 関数であること, および以下の関係式を使ってよい.

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}} \qquad (a > 0) \tag{6}$$

[物理学 1]

以下の設問に答えよ.

問 1. 電荷も電流も存在しない, 誘電率 ϵ , 透磁率 μ の一様な媒質を考える. 電場 $E(\mathbf{r},t)$ と磁束密度 $B(\mathbf{r},t)$ が満たすマクスウェル方程式は以下のように書ける.

$$\begin{aligned} \nabla \cdot \boldsymbol{E}(\boldsymbol{r},t) &= 0 \\ \nabla \cdot \boldsymbol{B}(\boldsymbol{r},t) &= 0 \\ \nabla \times \boldsymbol{B}(\boldsymbol{r},t) - \epsilon \mu \frac{\partial \boldsymbol{E}(\boldsymbol{r},t)}{\partial t} &= 0 \\ \nabla \times \boldsymbol{E}(\boldsymbol{r},t) + \frac{\partial \boldsymbol{B}(\boldsymbol{r},t)}{\partial t} &= 0 \end{aligned}$$

ここで*r*は位置ベクトル,*t*は時間を表す.

(a) マクスウェル方程式から, 電場 *E*(*r*,*t*) に対して

$$\nabla^2 \boldsymbol{E}(\boldsymbol{r},t) - \epsilon \mu \frac{\partial^2 \boldsymbol{E}(\boldsymbol{r},t)}{\partial t^2} = 0$$
(1)

で記述される波動方程式が成り立つことを示せ.

(b) 電場 **E**(**r**, t) について, 以下のように記述される z 方向に伝播する平面波

$$\boldsymbol{E}(\boldsymbol{r},t) = \begin{pmatrix} E_x(\boldsymbol{r},t) \\ E_y(\boldsymbol{r},t) \\ E_z(\boldsymbol{r},t) \end{pmatrix} = \begin{pmatrix} a_x \cos(kz - \omega t) \\ a_y \cos(kz - \omega t + \delta) \\ 0 \end{pmatrix}$$
(2)

が,式(1)の波動方程式を満たす条件を示せ.ここで,波数をk,角振動数を ω ,位置ベクト ルを $\mathbf{r} = (x, y, z)$ とし, a_x, a_y, δ は定数とする.

- (c) 電場 *E*(*r*,*t*) が式 (2) で記述されるとき, 磁束密度 *B*(*r*,*t*) を求めよ. ただし, 時間的に変動 しない静磁場をゼロとする.
- 問 2. 電磁波において電場が特定の方向に振動することを偏光という. 式 (2) で記述される z 方向に 伝播する平面波の電磁波に対して, その偏光状態は a_x , a_y , δ を使って表すことができる. ただ し, a_x , a_y はゼロでないとする.
 - (a) $\delta = 0$ のとき, 電場ベクトルが xy 平面上で直線の軌跡をとることを示せ. この状態を直線 偏光という.
 - (b) 一般的な a_x, a_y, δ に対して, 電場ベクトルが xy 平面上で以下の楕円の軌跡をとることを示せ. この状態を楕円偏光という.

$$\frac{E_x^2}{a_x^2} + \frac{E_y^2}{a_y^2} - 2\frac{E_x E_y}{a_x a_y} \cos \delta = \sin^2 \delta$$

(c) 電場ベクトルが xy 平面上で円の軌跡をとるための条件を a_x, a_y, δ を使って表せ. この状態を円偏光という.

- 問3.物質の屈折率 $n \operatorname{d} n = c/v$ で表される.ここで $v \operatorname{d} 媒質中の電磁波の伝播速度, c \operatorname{d} 真空中の光速度である.物質によっては屈折率 <math>n$ が電場ベクトルの方向に依存するものがある.このような特性を複屈折という.図1のように, x 方向と z 方向の電場に対する屈折率が n_1, y 方向の電場に対する屈折率が n_2 となる複屈折物質を考える.この物質は z = 0 から z = d (d > 0)の空間を満たしており,式(2) で記述される平面波の電磁波が z < 0の真空から物質に入射する.以下では, z = 0 において $a_x = a_y$, かつ $\delta = 0$ の直線偏光が入射する場合を考える.ただし,境界面における電場の振幅の変化は無視してよく,入射した電磁場は z 方向に直進する.
 - (a) 電磁波の波長は $\lambda = 2\pi/k$ である. z = d における x 方向と y 方向の電場の位相差 $\delta \in d$, $n_1, n_2,$ 及び, 真空中の波長 λ_0 を使って表せ.
 - (b) 光学実験でよく使われる複屈折物質は水晶である. z = dにおいて電磁波が円偏光となるための最小の水晶の厚み $d = d_1$ を有効数字3桁で計算せよ.ただし,真空中の波長を656 nm とし,その波長における水晶の屈折率として $n_1 = 1.5419, n_2 = 1.5509$ を用いよ.
 - (c) 問 (b) で求めた複屈折物質の厚みを 2 倍にしたとき, すなわち $d = 2d_1$ としたとき, $z = 2d_1$ においてどのような偏光になるか, z = 0 における偏光状態と比較して述べよ.

図 1: 真空から複屈折物質に入射する電磁波

[物理学 2]

以下の設問に答えよ.

- 問1. 図1のように、一様な重力場の中で、バネで繋がった質量の異なるおもりがついた振り子の微小振動を考える. 2 種類の振り子の糸の長さは等しく、振り子は鉛直平面内で運動し、振り子の糸と鉛直線のなす角をそれぞれ x, yとする. ここで、おもりの質量をそれぞれ m, M、振り子の糸の長さを l、重力加速度を g、バネのバネ定数を α 、時刻を tとする. x = y = 0の時にバネは自然長 Lとなる. 糸とバネの重さは無視でき、おもりは質点として考える. ただし、x, yは1より十分小さく、x, yの3次以上の項は無視できるとする. また L/l > |x y|とする.
 - (a) この系の重力による位置エネルギー *U*₁ 及びバネの弾性力による位置エネルギー *U*₂ が,下 記の式となることをそれぞれ示せ.

$$U_{1} = \frac{gl}{2}(mx^{2} + My^{2})$$
$$U_{2} = \frac{\alpha l^{2}}{2}(x - y)^{2}$$

- (b) 重力及び弾性力による位置エネルギー *U*₁, *U*₂ を用い, この系のラグランジアンと, 2 種類の振り子の運動方程式をそれぞれ求めよ.
- (c) この系の2つの固有振動数 ω₁, ω₂ を求めよ.
- (d) 問 1(c) で求めた固有振動数 ω₁, ω₂ が表す振り子の運動の特徴を簡潔に述べよ.

図 1: バネで繋がった2種類の振り子

- 問2. 図2のように, 問1の2種類の振り子が交互かつ無限に並んでいる場合の微小振動を考える. j組目の振り子の糸と鉛直線のなす角をそれぞれ $x_j, y_j(-\infty < j < +\infty)$ とし, x_j, y_j に関する条件は問1と同じとする.
 - (a) この系のラグランジアン,及び x_i, y_iのそれぞれに対する運動方程式を求めよ.
 - (b) 問 2(a) で求めた運動方程式の特殊解は $x_j = A \exp[i\{\omega t + ka(2j)/2\}], y_j = rA \exp[i\{\omega t + ka(2j+1)/2\}]$ と表される.この特殊解は、全ての振り子がある固有振動数 ω で振動し、同 じ質量の振り子は同じ振幅を持ち、その振幅はバネと平行な方向に伝搬する波を表してい

る. ここで, *a* は同じ質量の振り子の平衡状態時の距離 (2*L*) であり, *k* は波数 (実数), *A* は 複素定数, *r* は質量の異なる振り子の間の相対的な振幅比を表す. この特殊解を問 2(a) で 求めた運動方程式に代入し, *r* を消去することで固有振動数 ω と波数 *k* の関係式を求めよ.

(c) 問 2(b) において *k* = 0 の時, ω 及び *r* を求め, 得られた振幅比 *r* が表す振り子の運動の特徴を簡潔に述べよ.

[天文学 1]

巨大質量ブラックホール周囲の恒星の運動の観測について考察する. ブラックホール周囲の空間を恒 星が周回しているとき, この恒星の天球上の位置を長期間にわたって繰り返し測定することで, 天球 上に投影された恒星の運動が観測されている.

以下の問 1,2 の各問に答えよ.設問において数値が問われる場合にはその数値について有効数字2桁 で答えよ.なお簡単のためブラックホールによる重力以外の力は恒星の運動に影響しないとする.ま た恒星を質点として取り扱い,その質量はブラックホールの質量に比べて無視できるほど小さいとす る.恒星の運動について相対論効果は無視する.観測者と巨大質量ブラックホールとの相対的な運動 はないとする.

- 問1. 図1(左)に示すように、ブラックホールを周回する恒星の軌道面に直交座標の X 軸, Y 軸をとり、右手座標系で Z 軸を定め、YZ 平面上で Z 軸に対して -Y 側に I 傾いた方向の十分遠方からこの恒星の軌道を観測しているとする. 図1(右)に示すように、天球上の座標として x 軸をX 軸が投影された方向に、y 軸を Y 軸が投影された方向に定めたとき、恒星の楕円軌道の長軸が x 軸に、短軸が y 軸に一致し、恒星は軌道上を反時計周りに移動していたとする. この投影された楕円軌道の視長半径を a、視短半径を b、周期を P とし、 $I = 60^{\circ}$ として以下の問 (a)-(c) に答えよ.
 - (a) xy 平面上に投影されたブラックホールの位置はx 軸上かつx が正の位置にあった. この とき a, b が満たすべき条件と、ブラックホールの位置する座標 ($x_{\text{BH}}, 0$) を求めよ.
 - (b) (a) の条件のとき, *XYZ* 空間上で恒星がブラックホールに最も近づいたときの天球上に投影した恒星の移動速度ベクトル (μ_x, μ_y) を *P*, *a*, *b* を使って表わせ.
 - (c) $a = 1.7 \times 10^{-1}$ arcsec, $b = 4.0 \times 10^{-2}$ arcsec, $P = 2.72 \times 10^{1}$ 年, 観測者とブラックホールとの距離 D = 8.0 kpc のとき, ブラックホールの質量を太陽質量単位で求めよ.

図 1: 巨大質量ブラックホールを周回する恒星の軌道運動と観測者の方向の模式図 (左) および天球上 に投影された恒星の運動の模式図 (右). 黒丸印はある時刻における恒星の位置, 太実線は恒星の軌道, 矢印は恒星の軌道運動の向きを示す.

(次ページにつづく)

問2. 恒星の運動の高精度観測のためには, 観測装置で得られる恒星像の拡がりよりもはるかに小さ い誤差で恒星の位置を測定するような工夫がされている. そこで恒星の位置測定の精度につい て考察する.

天球上に、恒星の位置の近くに原点を持つ二次元直交座標として xy 座標をあらためて設定する. 恒星が xy 座標原点に存在し、誤差のない理想的な状態で観測される恒星像の表面輝度分布 を f(x,y) で表す. さらに恒星が (x_s, y_s) に位置するときに観測される恒星像の表面輝度分布が $f(x - x_s, y - y_s)$ で表されるとする. ここでは簡単のため、天球上の恒星の一方向の位置ずれに ついて考察することとして xy 座標上の恒星の位置が $(0, y_s)$ と表されるものとする (図 2).

f(x,y) に恒星像の全光度を f_0 とした二次元軸対称ガウス分布

$$f(x,y) = \frac{f_0}{2\pi\sigma_r^2} \exp\left(-\frac{x^2 + y^2}{2\sigma_r^2}\right)$$

を仮定したとき, $f(x, y - y_s)$ の観測から y_s を求めるひとつの手法とその測定誤差について, 以下の問 (a)–(c) に答えよ. なお, f(x, y) は複数回の測定において一定であるとし, この恒星以外の光源は存在しないとする.

図 2: 恒星が (0, *y*_s) に位置するときの恒星像の表面輝度分布 (左; グレースケールとコントア (破線) で表示), および *x* = 0 における恒星像の表面輝度分布の断面 (右; 実線) の模式図.

(a) y > 0 および y < 0 の領域中の恒星像の総光度 F_+ および F_- は以下のようになる.

$$\begin{split} F_{+} &= \int_{0}^{\infty} \left(\int_{-\infty}^{\infty} f(x, y - y_{\rm s}) \, dx \right) \, dy \\ F_{-} &= \int_{-\infty}^{0} \left(\int_{-\infty}^{\infty} f(x, y - y_{\rm s}) \, dx \right) \, dy \\ y_{\rm s} &\neq 0 \text{ 00場合}, F_{+} \succeq F_{-} \text{ は一致しない. そこで } |y_{\rm s}| \ll \sigma_{r} \text{ 0} \succeq \mathfrak{S}, \end{split}$$

$$\frac{y_{\rm s}}{\sigma_r} = \sqrt{\frac{\pi}{2}} \cdot \frac{F_+ - F_-}{F_+ + F_-} \tag{1}$$

となることを示せ. なお $\int_{-\infty}^{\infty} \exp(-x^2) dx = \sqrt{\pi}$ の公式を使っても良い.

(b) F_- および F_+ の測定のそれぞれに誤差 $\varepsilon_-, \varepsilon_+$ が伴っている状況を考える. すなわち F_-, F_+ を真の値とするとき測定値 F'_-, F'_+ を以下のように表す.

$$F'_{+} = \int_{0}^{\infty} \left(\int_{-\infty}^{\infty} f'(x, y - y_{\rm s}) \, dx \right) \, dy = F_{+} + \varepsilon_{+}$$
$$F'_{-} = \int_{-\infty}^{0} \left(\int_{-\infty}^{\infty} f'(x, y - y_{\rm s}) \, dx \right) \, dy = F_{-} + \varepsilon_{-}$$

なお式中の f'(x,y) は誤差を含んだ実際に観測された恒星像の表面輝度分布である. この とき, 測定値 $(F'_{+} - F'_{-})/(F'_{+} + F'_{-})$ を $(F_{+} - F_{-})/(F_{+} + F_{-})$ の値と考え, 問 2(a) の (1) 式に従い恒星の位置 $y_{\rm s}$ を求めるとする. 真の恒星の位置を xy 座標原点とし, ε_{+} , ε_{-} の どちらの確率密度関数も平均 0, 標準偏差 σ_{F} とした正規分布に従うとき, 恒星位置の測 定誤差の標準偏差 $\sigma_{y_{\rm s}}$ を σ_{r} , σ_{F} , f_{0} を使って表わせ. ただし, ε_{+} と ε_{-} とは無相関とし, $\sigma_{F} \ll f_{0}$ とする.

(c) 直径 D = 10 m の円形開口をもつ望遠鏡を使い波長 $\lambda = 2.2 \ \mu$ m で恒星の観測を行い, 誤差 のない理想的な状態で観測される恒星像として光学的な回折限界像 (エアリーディスク) が得 られ, F_- , F_+ それぞれの測定誤差の標準偏差に対する恒星像の全光度の比が $f_0/\sigma_F = 200$ となったとする.このとき, 恒星位置の測定誤差の標準偏差 σ_{y_s} を秒角単位 (arcsec) で求 めよ.ただし光学的な回折限界像 (エアリーディスク) を二次元軸対称ガウス分布 f(x,y)で近似するため, エアリーディスクの第1暗環の半径 (天球上の角度で表す) の 0.36 倍をガ ウス分布の σ_r とおくこと. 解答にあたって $\sqrt{\pi} = 1.8$ の近似値を使ってもよい.

[天文学 2]

遠方にある天体からの放射を測定(観測)することによってその天体の物理量を見積もることができる.以下では,星間雲中にある固体粒子(ダスト)からの放射と中性水素原子ガス雲からの波長 21 cm 輝線について考察する.以下の設問に答えよ.

問1. 図1のように観測者から距離 D だけ離れたところにある星間雲中のダストからの熱放射を考え よう. 簡単のためダストのサイズは観測波長よりも十分に大きいとし,各ダストの表面からの 単位面積・単位立体角・単位時間・単位振動数あたりの放射強度は,振動数 v とダストの温度 T の関数として

$$B_{\nu}(\nu,T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1}$$
(1)

で与えられるとする.また,観測者から星間雲までの距離は星間雲のサイズに比べ十分に大きいとする.下の (a) から (e) の問いに答えよ.ただし,星間雲中のダストからの熱放射以外の放射はないとし,ダストは同一形状(半径 *a* の球形,1 個あたりの質量 *m_d*)で星間雲内に一様に分布し,温度 *T* で熱平衡にあるとする.必要であればプランク定数 *h* = 6.6 × 10⁻³⁴ [m² kg s⁻¹],ボルツマン定数 *k* = 1.4 × 10⁻²³ [m² kg s⁻² K⁻¹],真空での光速度 *c* = 3.0 × 10⁸ [m s⁻¹], 3(*e^x* - 1) - *xe^x* = 0 の解が *x* ≈ 2.8 であることを使ってもよい.

- (a) ダストの温度が T = 100 K 程度のとき,ダストからの放射を波長 3 mm 程度の電磁波で 観測する場合,放射強度が温度にほぼ比例することを示せ.
- (b) 式(1)で表される放射強度が最大値をとる振動数 *v*_{max} [Hz] を温度の関数として導出せよ. なお数値は有効数字2桁まで求めよ.
- (c) 星間雲中のダスト1個からの放射を距離 D 離れた場所で測定するとき,単位面積・単位 時間・単位振動数あたりの放射フラックスを導出せよ.
- (d) 前問の結果を用いて、図1のように、距離 D 離れた場所にある星間雲中のダストの総質 量 M_d を観測地点での放射フラックス F_ν から求める関係式を導け.ただし、星間雲から のダストの放射は吸収されずに観測地点に届く(放射が光学的に薄い)と仮定せよ.
- (e) 実際には、観測波長がダストのサイズに比べて十分に短くない場合がある.その場合、前間で導出した式から求めた質量 M_dに比べ、実際のダストの総質量は大きくなるか小さくなるかを答えよ.またその理由について簡潔に述べよ.

図 1: 星間雲と観測者の位置関係.

<u>準位</u> 1				
自発放射	誘導放射	吸収		
<u>準位</u> 0,	hv	衝突逆励起	,	衝突励起

図 2: 2準位モデル.

- 問 2. 次に熱平衡状態にある星間雲中の原子からの輝線について考察しよう.以下の (a) から (e) の問いに答えよ.
 - (a) 図2のように、熱平衡状態にある原子が離散的な2つのエネルギー準位(準位1と準位0) に分かれている2準位モデルを考える.いま準位1と準位0の間の遷移は、自発放射,誘 導放射,吸収、衝突逆励起、衝突励起とが釣り合っているとする.自発放射の遷移確率は アインシュタインA係数 A_{10} [s⁻¹] で与えられ、衝突励起、衝突逆励起の遷移確率はそれ ぞれ C_{01} [s⁻¹], C_{10} [s⁻¹] と表されるとする.誘導放射および吸収の遷移確率はアインシュ タインB係数を用いて、 $B_{10}\bar{J}$ [s⁻¹]、 $B_{01}\bar{J}$ [s⁻¹] と表されるとする.ここで \bar{J} は、雲中の 単位面積・単位立体角・単位時間・単位振動数あたりの放射強度 I_{ν} を立体角平均した平均 放射場 $J_{\nu}(=\int I_{\nu}d\Omega/4\pi)$ と、準位1から準位0の遷移によって放射される輝線強度の振動 数依存性を表す輝線のプロファイル関数 $\phi(\nu)$ を用いて、 $\bar{J} = \int_{0}^{+\infty} J_{\nu}\phi(\nu)d\nu$ と表される. 輝線のプロファイル関数 $\phi(\nu)$ は、2準位間のエネルギー差に相当する振動数で鋭いピーク を持ち、振動数についての積分値が1になるように規格化されている $(\int_{0}^{+\infty}\phi(\nu)d\nu \equiv 1)$. このとき、準位1と準位0にある原子の定在数密度 $n_1 \ge n_0$ が満たす関係を $A_{10}, B_{01}, B_{10}, C_{01}, C_{10}$ などを用いて表せ.
 - (b) 一般にアインシュタイン *A* 係数とアインシュタイン *B* 係数の間には,以下の関係式が成 り立つことが知られている.

$$g_0 B_{01} = g_1 B_{10}, \qquad A_{10} = \frac{2h\nu^3}{c^2} B_{10}$$
 (2)

いま放射場が卓越しガスが熱平衡状態にあり (つまり衝突励起,衝突逆励起は無視できる), 2準位の定在数密度がボルツマン分布で近似できる場合を考え,(2)の関係式が成り立つ ことを示せ.ただし, $g_1 \ge g_0$ は準位1と準位0の統計的重みを表し,放射は等方的で J_{ν} は式(1)で表されるとする.

(c) 星間雲から観測点までを結んだ直線を *x* 軸としたとき, 雲内で発せされた放射の強度が散 乱の効果を無視した次の放射輸送方程式

$$\frac{dI_{\nu}(x)}{dx} = -\kappa_{\nu}(x)I_{\nu}(x) + \varepsilon_{\nu}(x)$$
(3)

で表されるとする.ここで ε_{ν} は放射係数, κ_{ν} は吸収係数である. ε_{ν} と κ_{ν} を A_{10} と輝線 のプロファイル関数 $\phi(\nu)$ などを使って表せ.

- (d) 中性の水素原子ガスからなる星間雲(HI 雲)の質量を求めよう. HI 雲は典型的には温度 100 K 程度であるため, 雲内のすべての水素原子が基底状態にあるとみなせる. 基底状態 にある水素原子は原子核と電子のスピンの向きの違いによって, エネルギーが異なる2つ の準位に分かれている. スピンが平行(準位1)の状態と反平行(準位0)の状態のエネ ルギー差は $\Delta E_{10}/k \simeq 0.07$ K で, 定在数密度は温度 T でのボルツマン分布で近似でき, 準位1 と準位0の統計的重みはそれぞれ $g_1 = 3 \ge g_0 = 1 \ge 1 \le 3$. この2準位間での遷移 により波長 21 cm で放射あるいは吸収が起こる. HI 雲が 21 cm 輝線に対して光学的に薄 い場合, 図1のように距離 D 離れた観測者から見た立体角が Ω_{cl} の HI 雲中に含まれる水 素原子ガスの総質量 $M_{\rm HI}$ を, 21 cm 輝線の総放射強度 $I(=\int I_{\nu'} d\nu')$, A_{10} , 2準位間のエ ネルギー差 ΔE_{10} , Ω_{cl} , D から求める表式を導出せよ. ただし, 観測者から雲までの距離 は雲の大きさに比べて十分に大きいとし, HI 雲内の水素原子 21 cm 輝線以外の放射および 吸収はないとせよ. また, 水素原子 1 個あたりの質量を $m_{\rm H}$ とする.
- (e) 熱平衡状態にある HI 雲が 21cm 輝線に対して光学的に厚い場合,観測される輝線からこの HI 雲の温度を求めるにはどうすればよいか. 簡潔に述べよ.